二阶导数和极值点

关于极值点问题极值点处函数的二阶倒数f''(x)可以等于0么?我觉得如果等于0的话,那么其一阶导数f'(x)为常数,那么为了保证是极值点,其极值点出会出现尖点,使得该点不... 关于极值点问题
极值点处函数的二阶倒数f''(x)可以等于0么?
我觉得如果等于0的话,那么其一阶导数f'(x)为常数,那么为了保证是极值点,其极值点出会出现尖点,使得该点不可导.那么导数就没有意义了?
展开
 我来答
郁鸾袁千山
2020-01-14 · TA获得超过3690个赞
知道大有可为答主
回答量:3096
采纳率:28%
帮助的人:198万
展开全部
事实上f'(x)=f''(x)=0的点又叫拐点,比如说f(x)=x^3的时候x=0处就有一个拐点.
如果一个点是极值点的话导数必然为0或者不存在.导数不存在的话二阶导数自然也不存在.但是存在的话必定为0,这时候就要看二阶导,如果不是0的话就是极值点,如果是0的话就是拐点,但这时是否极值点需要讨论更高阶的导数.在这种情况下,令f的n阶导在该点处去非0值的最低阶的导数(不可能全为0,否则函数在该点泰勒展开后可证明在一个邻域内是常函数),如果n是偶数的话这就是一个极值点,否则就不是.
不是任意可导的函数的分析更复杂一些,不过也大同小异.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式