高数 极限?
9个回答
展开全部
关于极限的计算方法有很多,应用也很灵活,往往在一道题中,我们需要综合使用多种方法。因此,对极限的计算方法进行总结,提炼出一些实用的技巧,有助于提高计算的速度和准确度,从而能够提高考试的分数,甚至改变自己的命运!
1、利用四则运算法则
定理1 已知 limf(x),limg(x)都存在,极限分别为都存在,极限值分别为A,B,则下面极限都存在,
且有 (1)lim [f(x)±g(x)]=A±B;
(2)lim f(x)·g(x)=A·B;
(3)lim(f(x)/g(x))=A/B(B≠0).
分析:极限的四则运算法则是极限的基本法则,直接利用四则运算法则的题目往往难度都不大,在大学的期末考试或者研究生入学考试中一般不会只考察这一个知识点,往往需要结合其他的方法或者需要对式子进行化简和变形。
点评:对于这种两个分式差的表达式,对其进行化简只有一个方向,就是通分,通分后可以消掉为0的因子,然后利用极限的四则运算法则及函数的连续性即可求得。
点评:这个例题中的分子分母都是多项式,对于这一类题我们可以在分子分母上同时除以多项式的最高次幂,然后利用极限的四则运算法则进行计算,这一类题的结果有如下公式,利用这个公式的结论,没有太大的难度。
2、利用函数连续性
初等函数在其定义域D内是连续的,若x∈D,则有
这种情况下,函数的极限值与函数值相等,因此只需把数值代入函数表达式即可。但这种考题在考研的考试中不会直接出现,往往须与其他方法结合起来。
连续(图片来自:视觉中国)
(1)分子分母出现为0的公因式
方法:先对分子分母进行因式分解,约掉为0因式后再根据连续性计算。
■注1 本题也可用洛必达法则。
(2)分子或分母含有无理式
方法:对含有无理式的函数,需要进行分子或分母有理化,再计算。
点评 无理式在分母上大家很容易想到分母有理化,而对这种看似不是分式的表达式,往往想不到要用有理化,但这这道题表达式可以看作分母为1的分式,然后进行分子有理化,再利用连续性可得到结果。
3、利用两个重要极限
两个重要极限是计算函数极限的重要方法,利用这两个结论能有效的将许多复杂的极限变得简化,从而能迅速计算出函数的极限。
第一个重要极限
第一个重要极限
第一个重要极限本身很简单,但它存在多种形式的变形,这些变形后的公式在做题过程中可以直接应用。
第一个重要极限及其变形
■注2 函数形式中的□可以是满足条件的任意函数。
第二个重要极限
第二个重要极限
第二个重要极限的变形
■注3 和第一个重要极限的变形类似,这两个公式里的x和u也可以是函数形式。
点评 第二个重要极限本身并不难,难的是如何凑出极限的形式,使得所凑的式子直接可以表示成e的幂函数形式。
解法一
点评 这个例题可以采用这两种解法,第一种方法虽然分子分母分别计算极限,但在凑第二个重要极限时结构比较简单;第二种方法在凑第二个重要极限时需要注意幂上的
1、利用四则运算法则
定理1 已知 limf(x),limg(x)都存在,极限分别为都存在,极限值分别为A,B,则下面极限都存在,
且有 (1)lim [f(x)±g(x)]=A±B;
(2)lim f(x)·g(x)=A·B;
(3)lim(f(x)/g(x))=A/B(B≠0).
分析:极限的四则运算法则是极限的基本法则,直接利用四则运算法则的题目往往难度都不大,在大学的期末考试或者研究生入学考试中一般不会只考察这一个知识点,往往需要结合其他的方法或者需要对式子进行化简和变形。
点评:对于这种两个分式差的表达式,对其进行化简只有一个方向,就是通分,通分后可以消掉为0的因子,然后利用极限的四则运算法则及函数的连续性即可求得。
点评:这个例题中的分子分母都是多项式,对于这一类题我们可以在分子分母上同时除以多项式的最高次幂,然后利用极限的四则运算法则进行计算,这一类题的结果有如下公式,利用这个公式的结论,没有太大的难度。
2、利用函数连续性
初等函数在其定义域D内是连续的,若x∈D,则有
这种情况下,函数的极限值与函数值相等,因此只需把数值代入函数表达式即可。但这种考题在考研的考试中不会直接出现,往往须与其他方法结合起来。
连续(图片来自:视觉中国)
(1)分子分母出现为0的公因式
方法:先对分子分母进行因式分解,约掉为0因式后再根据连续性计算。
■注1 本题也可用洛必达法则。
(2)分子或分母含有无理式
方法:对含有无理式的函数,需要进行分子或分母有理化,再计算。
点评 无理式在分母上大家很容易想到分母有理化,而对这种看似不是分式的表达式,往往想不到要用有理化,但这这道题表达式可以看作分母为1的分式,然后进行分子有理化,再利用连续性可得到结果。
3、利用两个重要极限
两个重要极限是计算函数极限的重要方法,利用这两个结论能有效的将许多复杂的极限变得简化,从而能迅速计算出函数的极限。
第一个重要极限
第一个重要极限
第一个重要极限本身很简单,但它存在多种形式的变形,这些变形后的公式在做题过程中可以直接应用。
第一个重要极限及其变形
■注2 函数形式中的□可以是满足条件的任意函数。
第二个重要极限
第二个重要极限
第二个重要极限的变形
■注3 和第一个重要极限的变形类似,这两个公式里的x和u也可以是函数形式。
点评 第二个重要极限本身并不难,难的是如何凑出极限的形式,使得所凑的式子直接可以表示成e的幂函数形式。
解法一
点评 这个例题可以采用这两种解法,第一种方法虽然分子分母分别计算极限,但在凑第二个重要极限时结构比较简单;第二种方法在凑第二个重要极限时需要注意幂上的
上海桦明教育科技
2024-12-15 广告
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加...
点击进入详情页
本回答由上海桦明教育科技提供
展开全部
高数的极限在计算的过程中需要对于基本函数的极限进行背诵,然后才能够争取找到处理问题的解决思路。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用tanx和sinx的三阶泰勒公式代进去就出来了
tanx ~ x+x^3/3 + o(x^3)
sinx ~ x- x^3/6 + o(x^3)
极限~(x+x^3/3 -x +x^3/6)/x^3 = 1/2
tanx ~ x+x^3/3 + o(x^3)
sinx ~ x- x^3/6 + o(x^3)
极限~(x+x^3/3 -x +x^3/6)/x^3 = 1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
姐姐你跟着我就行,店120等于列出来然后百60求出来就可以把这个提醒事项出来了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高速极限。嗯必须的你要是想干的话你找好地方上网查查去挑战挑战去
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询