柯西不等式高中公式是什么?

 我来答
三好学生学长
高能答主

2022-03-09 · 生活知识分享小达人,用分享传递快乐。
三好学生学长
采纳数:210 获赞数:87866

向TA提问 私信TA
展开全部

柯西不等式高中公式是是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

柯西不等式高中公式包括:

1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2。

2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]。

3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)。

4、一般形式:(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2。

柯西不等式的注意事项:

从历史的角度讲,柯西不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,即柯西-布尼亚科夫斯基-施瓦茨不等式。因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高中数学提升中非常重要,是高中数学研究内容之一。

帐号已注销
2021-11-11 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

1、二维形式:

(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2

等号成立条件:ad=bc

2、三角形式:

√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]

等号成立条件:ad=bc

3、向量形式:

|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)

等号成立条件:β为零向量,或α=λβ(λ∈R)。

基本性质

①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式