高数求解 感谢
3个回答
展开全部
设f(x)=∫<0,a-x>e^[y(2a-y)]dy;求∫<0,a>f(x)dx;
解:∵f(x)=∫<0,a-x>e^[y(2a-y)]dy,
∴ f '(x)=df(x)/dx=e^[(a-x)(a+x)](a-x)'=-e^(a²-x²);
∴df(x)=-e^(a²-x²)dx ; f(x)=-∫e^(a²-x²)dx;
且由原式得:f(a)=∫<0,a-a>e^[y(2a-y)]dy=∫<0,0>e^[y(2a-y)]dy=0;
∴∫<0,a>f(x)dx=xf(x)∣<0,a>-∫<0,a>xdf(x)=af(a)+∫<0,a>xe^(a²-x²)dx
=0-(1/2)∫<0,a>e^(a²-x²)d(a²-x²)=-(1/2)[e^(a²-x²)]<0,a>=-(1/2)+(1/2)e^a²
=(1/2)(e^a²-1);
解:∵f(x)=∫<0,a-x>e^[y(2a-y)]dy,
∴ f '(x)=df(x)/dx=e^[(a-x)(a+x)](a-x)'=-e^(a²-x²);
∴df(x)=-e^(a²-x²)dx ; f(x)=-∫e^(a²-x²)dx;
且由原式得:f(a)=∫<0,a-a>e^[y(2a-y)]dy=∫<0,0>e^[y(2a-y)]dy=0;
∴∫<0,a>f(x)dx=xf(x)∣<0,a>-∫<0,a>xdf(x)=af(a)+∫<0,a>xe^(a²-x²)dx
=0-(1/2)∫<0,a>e^(a²-x²)d(a²-x²)=-(1/2)[e^(a²-x²)]<0,a>=-(1/2)+(1/2)e^a²
=(1/2)(e^a²-1);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询