4个回答
展开全部
x--->0时
(arcsinx-sinx)/(arctanx-tanx)
--->[1/√(1-x^2)-cosx]/[1/(1+x^2)-(secx)^2]
--->[(-1/2)(1-x^2)^(-3/2)*(-2x)+sinx]/[-2x/(1+x^2)^2-2sinx/(cosx)^3]
--->(x+x)/(-2x-2x)
-->-1/2.
(arcsinx-sinx)/(arctanx-tanx)
--->[1/√(1-x^2)-cosx]/[1/(1+x^2)-(secx)^2]
--->[(-1/2)(1-x^2)^(-3/2)*(-2x)+sinx]/[-2x/(1+x^2)^2-2sinx/(cosx)^3]
--->(x+x)/(-2x-2x)
-->-1/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x->0
arcsinx = x+(1/6)x^3+o(x^3)
sinx = x-(1/6)x^3+o(x^3)
arcsinx-sinx =(1/3)x^3+o(x^3)
arctanx = x-(1/3)x^3+o(x^3)
tanx=x+(1/3)x^3+o(x^3)
arctanx-tanx =-(2/3)x^3+o(x^3)
lim(x->0) (arcsinx-sinx)/(arctanx-tanx)
=lim(x->0) (1/3)x^3/[-(2/3)x^3]
=-1/2
arcsinx = x+(1/6)x^3+o(x^3)
sinx = x-(1/6)x^3+o(x^3)
arcsinx-sinx =(1/3)x^3+o(x^3)
arctanx = x-(1/3)x^3+o(x^3)
tanx=x+(1/3)x^3+o(x^3)
arctanx-tanx =-(2/3)x^3+o(x^3)
lim(x->0) (arcsinx-sinx)/(arctanx-tanx)
=lim(x->0) (1/3)x^3/[-(2/3)x^3]
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据泰勒公式:
arcsinx=x+(1/6)*x^3+o(x^3)
sinx=x-(1/6)*x^3+o(x^3)
arctanx=x-(1/3)*x^3+o(x^3)
tanx=x+(1/3)*x^3+o(x^3)
原式=lim(x->0) [x+(1/6)*x^3+o(x^3)-x+(1/6)*x^3+o(x^3)]/[x-(1/3)*x^3+o(x^3)-x-(1/3)*x^3+o(x^3)]
=lim(x->0) [(1/3)*x^3+o(x^3)]/[(-2/3)*x^3+o(x^3)]
=lim(x->0) [1/3+o(1)]/[-2/3+o(1)]
=(1/3+0)/(-2/3+0)
=-1/2
arcsinx=x+(1/6)*x^3+o(x^3)
sinx=x-(1/6)*x^3+o(x^3)
arctanx=x-(1/3)*x^3+o(x^3)
tanx=x+(1/3)*x^3+o(x^3)
原式=lim(x->0) [x+(1/6)*x^3+o(x^3)-x+(1/6)*x^3+o(x^3)]/[x-(1/3)*x^3+o(x^3)-x-(1/3)*x^3+o(x^3)]
=lim(x->0) [(1/3)*x^3+o(x^3)]/[(-2/3)*x^3+o(x^3)]
=lim(x->0) [1/3+o(1)]/[-2/3+o(1)]
=(1/3+0)/(-2/3+0)
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询