直角三角形的定理有哪些

 我来答
快乐无限620
高粉答主

2021-03-03 · 关注我不会让你失望
知道顶级答主
回答量:5.2万
采纳率:97%
帮助的人:4650万
展开全部

它除了具有一般三角形的性质外,具有一些特殊的性质:

1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)

2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°

3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理

4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

5、如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:

射影定理图

(1)(AD)²=BD·DC。

(2)(AB)²=BD·BC。

(3)(AC)²=CD·BC。

射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边的射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。是数学图形计算的重要定理。

6、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。

证明方法多种,下面采取较简单的几何证法。

先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB/2

∵∠A=30°

∴∠B=60°(直角三角形两锐角互余)

取AB中点D,连接CD,根据直角三角形斜边中线定理可知CD=BD

∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)

∴BC=BD=AB/2

再证明定理的后半部分,Rt△ABC中,∠ACB=90°,BC=AB/2,那么∠A=30°

取AB中点D,连接CD,那么CD=BD=AB/2(直角三角形斜边上的中线等于斜边的一半)

又∵BC=AB/2

∴BC=CD=BD

∴∠B=60°

∴∠A=30°

7、如图,

在Rt△ABC中∠BAC=90°,AD是斜边上的高,则:

在Rt△ABC中∠BAC=90°,AD是斜边上的高,则

证明:S△ABC=1/2*AB*AC=1/2*AD*BC

两边乘以2,再平方得AB*AC=AD*BC

运用勾股定理,再两边除以

 ,最终化简即得

性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

匿名用户
2021-03-03
展开全部
勾股定理:两直角边的平方和等于斜边平方。根据不同角度的边还满足正弦和余弦定理。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式