二阶常微分方程通解公式
1个回答
展开全部
二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。
特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
常微分方程在高等数学中已有悠久的历史,由于它扎根于各种各样的实际问题中,所以继续保持着前进的动力。二阶常系数常微分方程在常微分方程理论中占有重要地位,在工程技术及力学和物理学中都有十分广泛的应用。比较常用的求解方法是待定系数法、多项式法、常数变易法和微分算子法等。
特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
常微分方程在高等数学中已有悠久的历史,由于它扎根于各种各样的实际问题中,所以继续保持着前进的动力。二阶常系数常微分方程在常微分方程理论中占有重要地位,在工程技术及力学和物理学中都有十分广泛的应用。比较常用的求解方法是待定系数法、多项式法、常数变易法和微分算子法等。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询