高数推翻1等于0.9循环吗?

 我来答
生活小达人164I
高能答主

2022-04-26 · 世界很大,慢慢探索
知道小有建树答主
回答量:1438
采纳率:97%
帮助的人:34.7万
展开全部

高数没有推翻1等于0.9循环。

方法一:我们知道1/3等于0.33333…2/3等于0.66666…所以1/3+2/3必须等于0.3333…+0.6666…

两边相加,结果1=0.999。

方法二:给定一组区间套,则数轴上恰有一点包含在所有这些区间中;0.999... 对应于区间套[0, 1]、[0.9, 1]、[0.99, 1]、[0.999, 1] ...而所有这些区间的唯一交点就是1,所以0.999... =1。

方法三:所有比 0.999... 小的有理数都比1小,而可以证明所有小于1的有理数总会在小数点后某处异于 0.999... (因而小于 0.999... ),这说明 0.999... 和1的戴德金分割是一模一样的集合,从而说明 0.999...=1。

高数推翻1等于0.9循环分析:

为了确认一个数是否是循环数,需要保证这个数是乘连续的若干个数后发生循环。因此,076923不会被认为是一个循环数,即使它各位循环后的数都是它的倍数。

以下这些数比如是循环数。

1、单独的一位数,如5。

2、单位重复的数,如555。

3、循环数的重复,如142857。

如果前导0不被允许,142857将是唯一一个十进制循环数。如果允许前导0,前几个循环数是:

142857(6位)。

0588235294117647(16位)。

052631578947368421(18位)。

热爱生活的小斌
高能答主

2022-04-16 · 我们生活在比较之中,有黑暗才有光明。
热爱生活的小斌
采纳数:779 获赞数:21602

向TA提问 私信TA
展开全部

高数没有推翻1等于0.9循环。

因为所有比0.9循环小的有理数都比1小,而可以证明所有小于1的有理数总会在小数点后某处异于0.9循环(因而小于0.9循环),这说明0.9循环和1的戴德金分割是一模一样的集合,从而说明0.9循环=1。

注意事项

循环数与单位分数的循环小数表示形式有关。一个长为L的循环数在数字上是1/(L+1)的循环节。相反的,如果1/p(p是质数)的循环节长度为p-1,它的循环节在数字上就是一个循环数。

不是所有的p会根据这个公式产生循环数。例如当p=23时会产生076923076923。这些失败的例子总包含重复的数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
拾掇拾掇0
高能答主

2022-05-08 · 致力于成为全知道最会答题的人
知道答主
回答量:169
采纳率:62%
帮助的人:3万
展开全部

0.9的循环不等于1,因为0.9不管怎么循环,她也小于1,只能说他约等于1。这道题是一道小学数学题,是一道概念题,做小学数学,一定要认真仔细千万不能马虎大意,多写多练搞清概念,掌握一定的定理,定义,做起来就容易多了,做数学题一定要活学活用不要死记硬背。

介绍:

本题是一个循环小数换算成分数的题,我们利用循环小数转换成分数的计算方法,也就是说设置这个循环小数为a,利用算式10a-a,用这种方法,我们可以消除掉它们的小数部分,计算得到a=1,所以说0.9循环就等于一,这是数学中一个常见的例子。

0.99循环等于一并不是一个真理,而是一个目前普遍认为是一个悖论因为0.99循环和一的差是可以做出来的,他等于0.0循环一,但是0.0循环一在数学上普遍认为等于零,而且是严格等于零,所以说0.99循环也可以认为是一,但是并不能进行严格的证明。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
杨建朝老师玩数学
高粉答主

2022-04-08 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
杨建朝老师玩数学
采纳数:16639 获赞数:37825

向TA提问 私信TA
展开全部
1就是0.9的循环。高数用极限的方法把1表示出来,就是用一种无限运动把静止的数1,表示出来,把有限用无限表示出来,反映出其中的辨证思维,也体现了高数的特点。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
甬江观点
高粉答主

2022-04-08 · 理性看世界,从容往前行
甬江观点
采纳数:4418 获赞数:153458

向TA提问 私信TA
展开全部
不可能的,高数重新解释一下,0.9循环的极限是1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式