代数几何(一)

 我来答
大沈他次苹0B
2022-07-13 · TA获得超过7272个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:171万
展开全部
背景

凯莱和克莱因的工作连接了非欧几何、黎曼微分几何和射影几何,代数方法广泛应用于射影几何后,人们开始寻求几何图形有哪些性质与坐标表示无关,这个问题也促成了对代数不变量的研究。

几何图形射影性质就是图形在线性变换下不变的那些性质,有时也考虑高次变换,研究在这些变换下曲线和曲面有哪些性质不变。不久数学家就从线性变换转到高次变换,称之为双有理变换:因为这些变换的代数表达式是坐标的有理函数,其逆变换也是坐标的有理函数。数学家集中研究双有理变换,是因为黎曼曾用它们研究阿贝尔积分和阿贝尔函数,研究曲线双有理变换的第一个重要进展就是由黎曼的工作引发的。这两个主题是19世纪后半叶代数几何的主要内容。

代数几何原先是指从费马到笛卡尔时代起所有把代数用于几何的研究工作,在19世纪后半叶把代数不变量和双有理变换的研究称为代数几何,到20世纪,代数几何指的就是后一领域。

先打一点代数不变量

通过坐标表示来确定要表示、研究的图形的几何性质,需要识别在坐标变换下保持不变的那些代数表达式。此外,用线性变换把一个图形变到另一个的射影变换使图形某些性质保持不变,代数不变量代表这些不变的几何性质。
代数不变量的问题产生于数论,特别在研究二元二次型 在x与y用线性变换T变换时是如何变换的,T即x=αx'+βy',y=γx'+δy',其中αδ-βγ=r,得到 ,在数论中系数都是整数,且r=1,但一般而言f的判别式D满足关系式 。
射影几何的线性变换更为一般,因为二次型和变换系数不限于整数,代数不变量一词是指在这更一般的线性变换下产生的不变量,区别于数论中的模不变量和黎曼几何的微分不变量。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式