3个回答
2021-12-22 · 知道合伙人教育行家
关注
展开全部
你如此分部积分麻烦。应为
I = ∫<1, e>xlnxdx = (1/2)∫<1, e>lnxd(x^2)
= (1/2)[x^2lnx]<1, e> - (1/2)∫<1, e>(x^2/x)dx
= (1/2)e^2 - (1/2)∫<1, e>xdx = (1/2)e^2 - (1/4)[x^2]<1, e>
= (1/2)e^2 - (1/4)(e^2-1) = (1/4)(e^2+1)
I = ∫<1, e>xlnxdx = (1/2)∫<1, e>lnxd(x^2)
= (1/2)[x^2lnx]<1, e> - (1/2)∫<1, e>(x^2/x)dx
= (1/2)e^2 - (1/2)∫<1, e>xdx = (1/2)e^2 - (1/4)[x^2]<1, e>
= (1/2)e^2 - (1/4)(e^2-1) = (1/4)(e^2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询