幂函数求和公式

 我来答
李冰峰喜爱旅游
高能答主

2022-03-08 · 世界很大,慢慢探索
知道大有可为答主
回答量:1.2万
采纳率:100%
帮助的人:206万
展开全部
幂函数求和公式:s=N+(N-1)+(N-2)+...+1,其中,所有添加的二项式展开式数,按下列二项式展开式确定,如此可以顺利进行自然数的1至n幂的求和公式的递进推导。
推导的过程:可通过二项式定理的展开式,可以转化为按等差数列,由低次幂到高次幂递进求和,最终可推导至李善兰自然数幂求和公式的原形。
当n为奇数时,由1+2+3+...+N与s=N+(N-1)+(N-2)+...+1相加得:2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+...+[(N-1)+(N-N-1)]+N=N+N+N+...+N加或减去所有添加的二项式展开式数=(1+N)N减去所有添加的二项式展开式数。
当n为偶数时,由1+2+3+...+N与s=N+(N-1)+(N-2)+...+1相加得:2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+...+[(N-1)+(N-N-1)]+N=2N+2[(N-2)+(N-4)+(N-6)+...0或1]加或减去所有添加的二项式展开式数。
又当n为偶数时,由1+2+3+...+N与s=N+(N-1)+(N-2)+...+1相加得:2s=[N+1]+[(N-1)+2]+[(N-2)+3]+...+[(N-N-1)+(N-1)]=2[(N-1)+(N-3)+(N-5)+...0或1]加或减去所有添加的二项式展开式数,合并n为偶数时2S的两个计算结果,可以得到s=N+(N-1)+(N-2)+...+1的计算公式。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式