(1+i)的n次方=(1-i)的n次方,求n
1个回答
展开全部
见了复数的n次幂,一般用复数的三角形式的棣莫弗定理。
1+i=√2(sinπ/4+cosπ/4i),
1-i=√2(sin3π/4+cos3π/4i)
由(1+i)^n=(1-i)^n
得2^(n/2)(sinnπ/4+cosnπ/4)=2^(n/2)(sin3nπ/4+cos3nπ/4)
即(sinnπ/4+cosnπ/4=sin3nπ/4+cos3nπ/4
sinnπ/4-sin3nπ/4=cos3nπ/4-cosnπ/4
和差化积得2cosnπ/2sin(-nπ/4)=-2sinnπ/2sin(-nπ/4)
nπ/4=kπ或nπ/2+π/4=kπ
n=4k或n=2k-1/2,k∈Z
1+i=√2(sinπ/4+cosπ/4i),
1-i=√2(sin3π/4+cos3π/4i)
由(1+i)^n=(1-i)^n
得2^(n/2)(sinnπ/4+cosnπ/4)=2^(n/2)(sin3nπ/4+cos3nπ/4)
即(sinnπ/4+cosnπ/4=sin3nπ/4+cos3nπ/4
sinnπ/4-sin3nπ/4=cos3nπ/4-cosnπ/4
和差化积得2cosnπ/2sin(-nπ/4)=-2sinnπ/2sin(-nπ/4)
nπ/4=kπ或nπ/2+π/4=kπ
n=4k或n=2k-1/2,k∈Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询