
这个式子怎么裂项?
4个回答
展开全部
(2n+1)/[n(n+1)]
=[n+(n+1)]/[n(n+1)]
=n/[n(n+1)] + (n+1)/[n(n+1)]
=1/(n+1) + 1/n
所以,当带上符号以后,则:
∑(-1)^(n-1) * (2n+1)/[n(n+1)]
=(1/1 + 1/2) - (1/2 + 1/3) + (1/3 + 1/4) - (1/4 + 1/5) + …… + (-1)^n * [1/n + 1/(n+1)]
=1 + (-1)^(n-1)/(n+1)
=1 + (-1)^(n+1)/(n+1)
希望能够帮到你!
=[n+(n+1)]/[n(n+1)]
=n/[n(n+1)] + (n+1)/[n(n+1)]
=1/(n+1) + 1/n
所以,当带上符号以后,则:
∑(-1)^(n-1) * (2n+1)/[n(n+1)]
=(1/1 + 1/2) - (1/2 + 1/3) + (1/3 + 1/4) - (1/4 + 1/5) + …… + (-1)^n * [1/n + 1/(n+1)]
=1 + (-1)^(n-1)/(n+1)
=1 + (-1)^(n+1)/(n+1)
希望能够帮到你!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
let
(2n+1)/[n(n+1)]≡ A/n + B/(n+1)
=>
2n+1≡ A(n+1) + Bn
n=0, => A=1
coef of n
A+B=2
B=1
(2n+1)/[n(n+1)]≡ 1/n + 1/(n+1)
(-1)^(n-1) . {(2n+1)/[n(n+1)] }
≡ (-1)^(n-1). [ 1/n + 1/(n+1) ]
(2n+1)/[n(n+1)]≡ A/n + B/(n+1)
=>
2n+1≡ A(n+1) + Bn
n=0, => A=1
coef of n
A+B=2
B=1
(2n+1)/[n(n+1)]≡ 1/n + 1/(n+1)
(-1)^(n-1) . {(2n+1)/[n(n+1)] }
≡ (-1)^(n-1). [ 1/n + 1/(n+1) ]
追问
您可以在纸上写一下或者讲解一下吗?实在看不懂
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询