多项式的次数怎么算

 我来答
华源网络
2022-07-03 · TA获得超过5602个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部

多项式是有限的单项式之和,多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数。

一、多项式的次数怎么算

多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数。例:

1.a²+ab+b²是二次三项式

2.x²+x+2 的次数是2

3.3x²y⁵+4xy-3的次数是7

4.xy+2x²y³+3x
那次数最高的项就是2x²y³,次数是2+3=5。
所以这个多项式的次数就是5。

二、 多项式的运算

1.加法与乘法

有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。

多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。

2.带余除法

若 f(x)和g(x)是F[x]中的两个多项式,且g(x)不等于0,则在F[x]中有唯一的多项式 q(x)和r(x),满足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次数小于g(x)的次数。此时q(x) 称为g(x)除ƒ(x)的商式,r(x)称为余式。当g(x)=x-α时,则r(x)=ƒ(α)称为余元,式中的α是F的元素。此时带余除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),称为余元定理。g(x)是ƒ(x)的因式的充分必要条件是g(x)除ƒ(x)所得余式等于零。如果g(x)是ƒ(x)的因式,那么也称g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特别地,x-α是ƒ(x)的因式的充分必要条件是ƒ(α)=0,这时称α是ƒ(x)的一个根。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式