二阶线性齐次微分方程通解是什么?
1个回答
展开全部
二阶齐次微分方程的通解是:y=e^(αx)(C1cos(βx)+C2*sin(βx))。
二阶常系数齐次线性微分方程一般形式为:y"+py’+qy=0 ,其中p,q为常数。以r^k代替上式中的y(k)(k=0,1,2) ,得一代数方程:r²+pr+q=0,这方程称为微分方程的特征方程,按特征根的情况,可直接写出方程的通解。
二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,二是线性非齐次微分方程。前者主要是采用特征方程求解,后者在对应的齐次方程的通解上加上特解即为非齐次方程的通解。
二阶微分方程的通解公式有以下:
第一种:由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是:y=C1cos2x+C2sin2x-xsin2x。
第二种:通解是一个解集……包含了所有符合这个方程的解;n阶微分方程就带有n个常数,与是否线性无关,通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2y2(x)是通解的话y=C1y1(x)+C2y2(x)+y1也是通解,但y=C1y1就是特解。
第三种:先求对应的齐次方程2y''+y'-y=0的通解。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询