Python中数据可视化的两个库!
2个回答
展开全部
1、Matplotlib
Matplotlib是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代设计的商业化程序语言MATLAB十分接近,具有很多强大且复杂的可视化功能。Matplotlib包含多种类型的API,可以采用多种方式绘制图表并对图表进行定制。
2、Seaborn
Seaborn是基于Matplotlib进行高级封装的可视化库,它支持交互式界面,使绘制图标的功能变得更简单,且图表的色彩更具吸引力,可以画出丰富多样的统计图表。
3、ggplot
ggplot是基于Matplotlib并旨在以简单方式提高Matplotlib可视化感染力的库,它采用叠加图层的形式绘制图形。例如先绘制坐标轴所在的图层,再绘制点所在的图层,最后绘制线所在的图层,但其并不适用于个性化定制图形。此外,ggplot2为R语言准备了一个接口,其中的API虽然不适用于Python,但适用于R语言并且功能十分强大。
4、Bokeh
Bokeh是一个交互式的可视化库,支持使用web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。
5、Pygal
Pygal是一个可缩放矢量图表库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。
6、Pyecharts
Pyecharts是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。
Matplotlib是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代设计的商业化程序语言MATLAB十分接近,具有很多强大且复杂的可视化功能。Matplotlib包含多种类型的API,可以采用多种方式绘制图表并对图表进行定制。
2、Seaborn
Seaborn是基于Matplotlib进行高级封装的可视化库,它支持交互式界面,使绘制图标的功能变得更简单,且图表的色彩更具吸引力,可以画出丰富多样的统计图表。
3、ggplot
ggplot是基于Matplotlib并旨在以简单方式提高Matplotlib可视化感染力的库,它采用叠加图层的形式绘制图形。例如先绘制坐标轴所在的图层,再绘制点所在的图层,最后绘制线所在的图层,但其并不适用于个性化定制图形。此外,ggplot2为R语言准备了一个接口,其中的API虽然不适用于Python,但适用于R语言并且功能十分强大。
4、Bokeh
Bokeh是一个交互式的可视化库,支持使用web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。
5、Pygal
Pygal是一个可缩放矢量图表库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。
6、Pyecharts
Pyecharts是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。
展开全部
1、 Matplotlib
Matplotlib是最全面的Python数据可视化库。
有人认为Matplotlib的界面很难看,但笔者认为,作为最基础的Python数据可视化库,Matplotlib能为使用者的可视化目标提供最大的可能性。
使用JavaScript的开发者们也有各自偏好的可视化库,但当所处理的任务中涉及大量不被高级库所支持的定制功能时,开发者们就必须用到D3.js。Matplotlib也是如此。
2、 Plotly
虽然坚信要进行数据可视化,就必须得掌握Matplotlib,但大多数情况下读者更愿意使用Plotly,因为使用Plotly只需要写最少的代码就能得出最多彩缤纷的图像。
无论是想构造一张3D表面图,或是一张基于地图的散点图,又或是一张交互性动画图,Plotly都能在最短的时间内满足要求。
Plotly还提供一个表格工作室,使用者可以将自己的可视化上传到一个在线存储库中以便未来进行编辑。
更多Python知识,请关注Python视频教程!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询