初二数学试卷期末

 我来答
羿痴柏
2013-01-26 · TA获得超过352个赞
知道答主
回答量:259
采纳率:99%
帮助的人:67.5万
展开全部
浦东新区,96学年度第二学期结束前两天的数学论文

一个选??择:(本大题,每题2分了12分)
1。该直线与y轴的交点的垂直坐标是................................... ................ ()
(A)(B)(C)3(D)? 3。
2。替代法解方程,你可以设置原始方程可以变成... ()
(A)(B);
(C),(D)。
3。下面的公式,方程组的实根......................................... ................... ()
(A),(B),(C),(D)。
4。已知平行四边形ABCD两条对角线AC和BD相交于点O到8cm和12cm的长边长度等于BC等于到6cm,则△BOC的周长等于.................. ............ ............... ()
(A)14(B)15(C)16(D)17。
5。下面的命题伪命题............................................. ........................... ()
(A)的梯形是等于两条对角线,(B)的矩形的两条对角线互相平分;
(C)的菱形彼此垂直的两条对角线,(D)的平方的每一个对角线平分对角线。
6。事件后,确定事件.............................................. .......................... ()
(A)x方程有真正的解决方案;(B真正的解决方案)关于x的方程
(C)x方程有真正的解决方案;(D)关于x的方程有实数解。

二,填空题(本大题12题,每题3分的36分中)
。方程。
8。如果函数是一个函数,那么一个。
9。如果点A(2,m)和点B(4,N)的函数图像,然后的大小关系为m,n是:百万元。 (“>”,“=”或“<”表示)
10。如果x的方程是无关的根,x = 2时,那么k的值。
11。请写一个解决方案是二元二次方程式。
12。七边形的内角和等于度。
13。已知正方形ABCD至8cm,然后一边的中点AB M的对角线BD距离等于
厘米边长等于。
14。等腰直角三角形斜边高5厘米,那么这个三角形两条直角边段长度的中点,连结等于厘米。
15。向量的两个要素:大小。
16。已知平行四边形ABCD,集,向量,向量
=。
17。配备了3个红球,5个黄球,6个黑球,这些球除了颜色以外,其余的包是一样的,那么这个袋子,拿出一个黑球的概率。
18。的概率是任意选择的两个数字2,4,6三个数字组成的双位数字组成,所有的双位数字的随机选择一个数字,这个数字是3整除。
回答问题:(一个大问题52分)
19。 (此题满分6)
方程组的解

20。 (此题满分6)
图,已知的载体。求:向量(1),(2)。

21。标题(7分)
众所周知的:因为在平行四边形ABCD中,双方BC和CD2厘米的AP平分∠BAD AC边BC于点P.
寻求之间的的差异PC长。

22。标题(7分)
B到A,B两个距离A至35公里散步行动先走了,去后,B自行车,如图所示,两个行程时间和距离的关系所提供的信息图标下的回答:
(1)(B)比甲晚出发;
(2)B,出发时间后赶上与A
(3)向乙比甲早在几个小时内到达B?

23。
学生(问题出8)获悉,在四川地震发生后,纷纷拿出自己的零花钱,参与筹款活动。筹款840元甲班学生乙班学生共捐款到乙班人均贡献的比甲学生/学生捐赠5美元,人均1000元,数比甲少了2类,以寻求甲班和B的数量学生。

24。 (标题8分)

已知:AM△ABC中线,D是线段的中点AM,AM = AC,AE‖BC。
求证:四边形EBCA等腰梯形。

/ a>
25。 (满分10分的问题)
已知的:正如在菱形ABCD,AB = 4∠B = 60°,∠PAQ = 60°的横射线CD在点P上的固定点的射线BC点Q,设定点P的距离,点B中,x,PQ = Y。
(1)求证:△APQ是一个等边三角形;
(2)寻求关于x的函数解析式y写它的定义域;
(3)如果PD⊥ AQ,BP的价值。

/ a>

浦东新区,第二学期,学年结束第一2天数学测试
参考答案及评分
多项选择题:
1。 D 2。 D,3。 C; 4。 C; 5。 A; 6。 B.
二,填写空白:
7.8 8。 ≠1; 9。 >; 10.4; 11。等; 12.900; 13。 ; 14.5; 15。方向16。 17。 18。 。
回答问题:
19。解决办法:②为:y = 2倍。 .................................................. ............................ (1)
代①获得5×2 = 20。 .................................................. ...................... (1)
∴x =±2。 .................................................. .................................. (1)
当x = 2,y = 4;当x = - 2时,y = -4。 .................................................. 。 (1)
的∴方程组的解是..................................... ........... (2)
20。映射解决方案:每2点,1点结束。
21。解决方案:在平行四边形ABCD中,

∵AD‖BC∴∠DAP =∠APB。 .................................................. ....... (2)
∵∠DAP =∠BAP∴∠APB =∠BAP。 ................................................ (1)
∴AB = BP。 .................................................. .................................. (2)
∵AB = CD,∴PC = BC-BP = 2。 .................................................. .......... (2)
22。解决方案:(1)2; ........................................... ....................... (1)
(2)2; ... .................................................. ................ (1)
(3)的行车时间函数解析式S = 5T。 .......................................... (1)
当S = 35,T = 7。 .................................................. ...................... (1)
令B离开,随着时间的函数解析式S = KT + B。
根据这些问题时,该溶液的距离和时间的函数的
∴乙解析式S =10吨-20。的含义.................................... (1)
当S = 35,T = 5.5。 .................................................. ................... (1)
∴7-5.5 = 1.5。
A:B比甲早1.5小时到达B地。 .................................................. 。 (1)
23。解:设乙班学生的数量第十名甲班学生人数的(x +2)的名称。 .................. (1)的
根据问题的含义,也。 .................................................. .... (3)
完成了。 .................................................. ....... (1)
解决方案。经检验............................................... ............. (1)
:是原方程的根,但不符合题意,舍去。
.............................................. ............................................... (1分钟)
A:甲班的学生人数是40人42乙班的学生数量。 ...................... (1)
24。证明:∵AE‖BC∴∠AED =∠MCD∠EAD =∠CMD。 ........................... (1)
∵AD = MD,∴△AED≌△MCD。 .................................................. .... (1)
∴AE = CM。 .................................................. ............................... (1)
∵BM = CM,∴AE = BM。该
∴的四边形AEBM平行四边形。 .................................................. .... (1)
∴EB = AM。 .................................................. ................. (1)
AM = AC,∴EB = AC。 .................................................. ................ (1)
∵AE‖BC,E??B和AC的平行∴四边形EBCA是梯形的。 ...................... (1)
∴梯形EBCA等腰梯形。 .................................................. ............. (1)
25。解决方案:(1)连结AC。

∵AB = BC菱形ABCD中,∠B = 60°∴△ABC是一个等边三角形。 ................................. (1)
∴AC = AB,∠BAC =∠的BCA = 60°。
∵∠PAQ = 60°,∴∠BAP =∠CAQ。 .................................................. 。 (1)
∵AB‖CD∠B = 60°∴∠BCD = 120°。
∴∠ACQ =∠B = 60°。
∴△ABP≌△ACQ。 .................................................. ...................... (1)
∴AP = AQ。 .................................................. ................. (1)
∴△APQ是一个等边三角形。 .................................................. ............. AP = PQ = Y,是(1)
(2)由△APQ是一个等边三角形。
AH⊥BC于点H,AB = 4,BH = 2,∠B = 60°,AH =。 ......... (1)
∴,即。 .................................... (1)
对于x≥0定义的域。 .................................................. ................ (1)
(3)(I)时,在边BC上的点P,∵PD⊥AQ,AP = PQ,∴AQ PD垂直平分线。
∴AD = DQ。
∴CQ = 0。 .................................................. .................................. (1)
∵BP = CQ,∴BP = 0。
(ii)当在边BC的延长线,点P在
同样BP = 8。 .................................................. ................ (1)
总之,BP = 0或BP = 8。
阿尔法
Alpha
揭英杰vp
2022-10-02 · 超过96用户采纳过TA的回答
知道小有建树答主
回答量:469
采纳率:100%
帮助的人:7.5万
展开全部
初中数学二年二期期末考试卷
班次___________姓名_________________计分____________
一、填空题:(3分×12=36分)
1、若 有意义,则x的取值范围是____________。
2、因式分解:m4-9=_________________________。
3、当 时,化简 =___________。
4、如果 ,则x =_____,y =_____。
5、若四边形四个内角之比为3:4:5:6,则最小的内角为_______。
6、菱形的两条对角线长分别为10cm,24cm,那么它的边长是_______cm,面积是________㎝2。
7、直角梯形ABCD中,AD‖BC,∠A=90º,△BCD为边长8cm的等边三角形,则梯形中位线长是_________。
8、如图,矩形ABCD中,对角线AC=15cm,E、F分别是AB,CD的中点,ED,BF分别交AC于M,N,则MN=_____cm。
9、地图上,A、B两地的距离为2.5cm,比例尺为1:500000,则A、B两地的实际距离是___________千米。
10、已知a=36cm,b=0.09cm,则a、b的比例中项x=______cm。
11、如图,AC‖BD,CE=3,DC=8,AC=6,则BD=_________。
12、如图,BD为Rt△ABC的边AC上的高,AB=8,BC=6,则△BCD与△ACB的相似比为__________。
A D D C
M A D
E F E
N
B C C B A
B
(第8题图) (第11题图) (第12题图)

二、选择题:(3分×10=30分)
13、若式子 在实数范围内有意义,则a满足( )
A、a≥0 B、a≤0 C、a≥-11 D、a≤-11

14、下列各式中计算正确的是( )
A、 B、
C、 D、
15、式子 的分母有理化的结果是( )
A、 B、 C、 D、
16、下列各式中,属于最简二次根式的是( )
A、 B、 C、 D、
17、顺次连结矩形四边中点所得的四边形是( )
A、平行四边形 B、矩形 C、菱形 D、正方形
18、下列命题中正确的是( )
A、对角线互相垂直的四边形是菱形
B、对角线互相垂直平分的四边形是正方形
C、对角线互相垂直平分的四边形是菱形
D、对角线互相平分且相等的四边形是正方形
19、下列四边形中是轴对称图形而不是中心对称图形的是( )
A、平行四边形 B、矩形 C、菱形 D、等腰梯形
20、下列各组的两个图形,一定相似的是( )
A、两个矩形 B、各角对应相等的两等腰梯形
C、各边对应成比例的两个多边形 D、有一个角相等的两个菱形
21、如图,DE‖BC,则下列各式正确的是 ( ) C
A、 B、 E
C、 D、 B D A
22、如图,D是△ABC的边BC上一点,则下列
条件中能判定△ACD∽△BCA的是( ) A
A、 B、
C、 D、 B D C

三、计算题:(4分×3=12分)
23、 24、

25、一个多边形的外角和等于内角和的一半,求这个多边形的边数。

四、解答题:(22分)
26、如图,在 ABCD中,BD是对角线,AE,CF分别是∠BAD,∠BCD的角平分线。求证:四边形AECF是平行四边形。

A D
F
E

B C

27、已知:梯形ABCD中,AD‖BC,中位线EF的长为16cm,AC交EF于G,且 cm,求AD、BC的长。
A D

E G F

B C

28、已知,在△ABC中,D、E、F分别是BC、CA、AB边的中点。
求证:⑴四边形AFDE是平行四边形;⑵ AFDE的周长等于AB+AC。
A

F E

B
D C

29、已知:矩形ABCD中,AB=4,BC=12,点F在AD边上,AF∶FD=1∶3,CE⊥BF于E,求△BCE的周长。
A F D
E

B C

30、如图,在△ABC中,∠ACB=90°,AD为BC边上的中线,E为AD的中点,CE的延长线交AB于F,FG‖AC交AD于G,求证:FB=2CG。
C

D
E G

A F B
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式