互为反函数的两个函数关系是什么?

 我来答
书尽胸臆
高粉答主

2022-01-06 · 精读书,爱读书,分享书,书中自有颜如玉,书中自有黄金屋
书尽胸臆
采纳数:729 获赞数:58966

向TA提问 私信TA
展开全部

互为反函数的两个函数的导数没有关系。

定义:y=f(x) ,其反函数是由前式直接求出的x=g(y), 有dy/dx=1/(dx/dy),即f(x)对x求导数=(g(y)对y的导数)的倒数。

例子: y=2x,反函数是x=y/2。由y=2x得dy/dx=2, 由x=y/2得 dx/dy=1/2; 显然二者互为倒数。已知函数y=f(x),从表达式y=f(x)出发,经过代数恒等变形,将变量x表示为y的表达式,若这个对应规则表示变量x为y的函数,则称为函数y=f(x)的反函数,记作x=f-1(y)。这样得到的两个函数叫作互反函数。

反函数存在定理

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式