互为反函数的两个函数关系是什么?
互为反函数的两个函数的导数没有关系。
定义:y=f(x) ,其反函数是由前式直接求出的x=g(y), 有dy/dx=1/(dx/dy),即f(x)对x求导数=(g(y)对y的导数)的倒数。
例子: y=2x,反函数是x=y/2。由y=2x得dy/dx=2, 由x=y/2得 dx/dy=1/2; 显然二者互为倒数。已知函数y=f(x),从表达式y=f(x)出发,经过代数恒等变形,将变量x表示为y的表达式,若这个对应规则表示变量x为y的函数,则称为函数y=f(x)的反函数,记作x=f-1(y)。这样得到的两个函数叫作互反函数。
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1<y2。因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。
因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。
如果f在D上严格单减,证明类似。