函数f(x)=x2-2x+2,求f(x)在区间[t,t+1]上的最小值
1个回答
展开全部
f(x)=x^2-2x+2=(x-1)^2+1,当x=1时,f(x)有最小值为f(1)=1
(接下来要利用二次函数的单调性)
f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以
当x=1位于[t,t+1]右侧,即t+1
(接下来要利用二次函数的单调性)
f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以
当x=1位于[t,t+1]右侧,即t+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询