数角的个数有什么规律吗?
1个回答
展开全部
数角的个数的方法就是用公式,角的个数s=(n+1)(n+2)/2,其中n为分开大角的线的条数。
数角的规律为:
1、数角的边的条数是n条时,角的总个数就是从1开始连续加到n-1为止。
2、数所分成的小角的个数是n个时,角的总个数就是从1开始连续加到n为止。
通过以下例子了解数角的规律:
图片上一共有三条边。有两个明显的角,还有一个是两个角合起来的角。
通过图片能够清楚的看出来,角的数量是2+1,一个箭头代表一个角。
当有四条边时,角的数量发生了变化。
小的角有3个,两个角组成的有2个,还有一个三个角组成的是1个。一共有6个角。
当图形一共有3条边,角的数量就是2+1,当图形一共有4条边,角的数量就是3+2+1。
这样即可发现数角的规律,有三条边,角的数量就是2+1。
有四条边,角的数量就是3+2+1。
有五条边,角的数量就是4+3+2+1。
有六条边,角的数量就是5+4+3+2+1,以此类推。
扩展资料:
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
角度之所以采用360这数值,是因为它容易被整除。360除了1和自己,还有21个真因子(2、3、4、5、6、8、9、10、12、15、18、20、24、30、36、45、60、72、90、120、180),所以很多特殊的角的角度都是整数。
在实际应用中,整数的角度已经够精准。当需要更准确的角度值时,如天文学中量度星体或地球的经度和纬度,除了可用小数表示,还可以把角度细分为角分和角秒:1度为60分(60′),1分为60秒(60″)。例如40.1875°
=
40°11′15″。要再准确一点的话,便用小数表示角秒,不再加设单位。
数角的规律为:
1、数角的边的条数是n条时,角的总个数就是从1开始连续加到n-1为止。
2、数所分成的小角的个数是n个时,角的总个数就是从1开始连续加到n为止。
通过以下例子了解数角的规律:
图片上一共有三条边。有两个明显的角,还有一个是两个角合起来的角。
通过图片能够清楚的看出来,角的数量是2+1,一个箭头代表一个角。
当有四条边时,角的数量发生了变化。
小的角有3个,两个角组成的有2个,还有一个三个角组成的是1个。一共有6个角。
当图形一共有3条边,角的数量就是2+1,当图形一共有4条边,角的数量就是3+2+1。
这样即可发现数角的规律,有三条边,角的数量就是2+1。
有四条边,角的数量就是3+2+1。
有五条边,角的数量就是4+3+2+1。
有六条边,角的数量就是5+4+3+2+1,以此类推。
扩展资料:
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
角度之所以采用360这数值,是因为它容易被整除。360除了1和自己,还有21个真因子(2、3、4、5、6、8、9、10、12、15、18、20、24、30、36、45、60、72、90、120、180),所以很多特殊的角的角度都是整数。
在实际应用中,整数的角度已经够精准。当需要更准确的角度值时,如天文学中量度星体或地球的经度和纬度,除了可用小数表示,还可以把角度细分为角分和角秒:1度为60分(60′),1分为60秒(60″)。例如40.1875°
=
40°11′15″。要再准确一点的话,便用小数表示角秒,不再加设单位。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询