概率论与数理统计问题:已知X~N(μ,1),即EX=μ,求E(e^X),
1个回答
展开全部
由定义
f(x)=1/根号(2pi)exp(-(x-mu)^2/1^2)
E(e^X)=积分(-无穷,无穷)e^x *f(x) dx
=积分(-无穷,无穷)e^x *1/根号(2pi)exp(-(x-mu)^2/1^2) dx
=1/根号(2pi)积分(-无穷,无穷)exp(x)*exp(-(x-mu)^2) dx
=1/根号(2pi)积分(-无穷,无穷)exp(x-(x-mu)^2) dx
配方x-(x-mu)^2=-x^2+(2mu+1)x-mu^2
=-(x-mu-1/2)^2+1/2*(2mu+1/2)
=1/根号(2pi)积分(-无穷,无穷)exp(-(x-mu-1/2)^2) exp(1/2*(2mu+1/2))dx
换元y=x-1/2
=exp(1/2*(2mu+1/2))*1/根号(2pi)积分(-无穷,无穷)exp(-(y-mu)^2) dy
=exp(1/2*(2mu+1/2))*1
=exp(mu+1/4)
f(x)=1/根号(2pi)exp(-(x-mu)^2/1^2)
E(e^X)=积分(-无穷,无穷)e^x *f(x) dx
=积分(-无穷,无穷)e^x *1/根号(2pi)exp(-(x-mu)^2/1^2) dx
=1/根号(2pi)积分(-无穷,无穷)exp(x)*exp(-(x-mu)^2) dx
=1/根号(2pi)积分(-无穷,无穷)exp(x-(x-mu)^2) dx
配方x-(x-mu)^2=-x^2+(2mu+1)x-mu^2
=-(x-mu-1/2)^2+1/2*(2mu+1/2)
=1/根号(2pi)积分(-无穷,无穷)exp(-(x-mu-1/2)^2) exp(1/2*(2mu+1/2))dx
换元y=x-1/2
=exp(1/2*(2mu+1/2))*1/根号(2pi)积分(-无穷,无穷)exp(-(y-mu)^2) dy
=exp(1/2*(2mu+1/2))*1
=exp(mu+1/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询