用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为多少?
2个回答
展开全部
用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为328个。
由题意知本题是一个分类计数问题,若个位数字为0,前两位的排法种数为9×8=72,若个位数字不为0,则确定个位数字有4种方法,确定百位数字有8种方法,确定十位数字有8种方法,∴排法种数为4×8×8=256,所以,256+72=328,所以,可以组成328个没有重复数字的三位偶数。
计数原理:
做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询