求经过点M(2,-1)和直线x+y-1=0相切,且圆心在直线2x+y=0上的圆的方程
展开全部
设圆方程为:(X-a)^2-(y-b)^2=r^2
所以圆心为(a,b)
因为圆心在直线2X+Y=0上,所以2a+b=0
因为圆与直线X+Y-1=0相切于(2,-1)即圆心到(2,-1)距离为半径r:
r=√〔(a-2)^2+(1-2a)^2〕
且过圆心(a,b)和(2,-1)的直线与直线X+Y-1=0垂直,即斜率K=1
所以K=1-2a/a-2=1,所以a=1,b=-2,r^2=2
所以圆方程为:(X-1)^2-(y+2)^2=2
所以圆心为(a,b)
因为圆心在直线2X+Y=0上,所以2a+b=0
因为圆与直线X+Y-1=0相切于(2,-1)即圆心到(2,-1)距离为半径r:
r=√〔(a-2)^2+(1-2a)^2〕
且过圆心(a,b)和(2,-1)的直线与直线X+Y-1=0垂直,即斜率K=1
所以K=1-2a/a-2=1,所以a=1,b=-2,r^2=2
所以圆方程为:(X-1)^2-(y+2)^2=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询