悖论是什么?
展开全部
分类: 教育/学业/考试
问题描述:
悖论是什么?有没有什么有意思的故事或是未解的?
解析:
悖(bèi)论,从字面上讲就是自相矛盾,讲不通,说不明的荒谬理论。但悖论并非无稽之谈,它在荒诞中蕴含着哲理,给人以启迪。沿着它所指引的推理思路,你会感到走上了一条繁花似锦的羊肠小道,开始觉得顺理成章,而后会不知不觉陷入自相矛盾的泥潭。一旦将矛盾揭破,又令人回味无穷,感到滑稽可笑。经过认真的思考,又提高了人们认识问题的能力。
有人把悖论分为两类。一类是逻辑和数学型悖论,是由逻辑和数学中的概念构成的。另一类是语文学悖论,是由命名和真、假等概念构成的。在数学研究中更注重第一类悖论。这类悖论的通常形式是:如果承认某命题正确,就会推出它是错误的;如果认为不正确,就会推出它是正确的。
现在用一个最简单的“说谎者悖论”作例子,这是公元前4世纪希腊哲学家欧几里得提出来的。
原命题为:“我正在说的这句话是谎话。”
如果你认为他说的话是一句真,那么根据这句话本身的内容来分析,他说的就是一句谎话。如果你认为他的话是谎话,那么既然说的是谎话,分析的结果他所说的就应该是真话。到底他说的是真话还是谎话,谁也说不清了(图149)。
类似的悖论早在公元前6世纪就有人提出来了,那是一位克里特岛的哲学家埃皮曼尼克斯提出的命题。他说:“克里特岛的人每一句话都是谎话”。试问这句话本身是真话还是谎话?如果我们认为它是真话,那么埃皮曼尼克斯本人就是克里特岛人,他的话应该是谎话。如果我们认为它是谎话,说明克里特岛人是有人讲真话的,当然这个命题就应该被否定。所以无论怎么看,都难以自圆其说。不过这个悖论与前一个的不同之处在于,它只能从肯定的前提推出否定的结果,却不能从否定的前提推出肯定的结果,因此算不上一个最典型的悖论。
悖论读来有趣,却常令科学家们感到苦恼。因为严密的科学都应该是真实可靠的。特别是数学,以严密的逻辑推理为基础,更容不得任何自相矛盾的命题或结论。例如“不在同一直线上的3点决定一个平面”的论断是正确的,那么只用两点词或同一直线上的3点或不在同一直线上的4点都不能决定一个平面。但悖论却破坏了这种严密性,它反映了数学科学并不是铁板一块,在它大厦中还存在着裂缝。它的一些概念和原理之中还存在着矛盾和不完善、不准确之外,有待于科学家们进一步探讨和解决。数学正是在不断发现和解决矛盾的过程中发展起来的。尽管从古希腊到今天,悖论给许多人带来了快乐,人们通常把它列入“趣味数学”的范畴,但那些伟大的科学家和数学家们却总是极其严肃地对待它。事实上,现代逻辑学和 *** 论中的一些巨大的进展正是努力解决了经典悖论的直接结果。
问题描述:
悖论是什么?有没有什么有意思的故事或是未解的?
解析:
悖(bèi)论,从字面上讲就是自相矛盾,讲不通,说不明的荒谬理论。但悖论并非无稽之谈,它在荒诞中蕴含着哲理,给人以启迪。沿着它所指引的推理思路,你会感到走上了一条繁花似锦的羊肠小道,开始觉得顺理成章,而后会不知不觉陷入自相矛盾的泥潭。一旦将矛盾揭破,又令人回味无穷,感到滑稽可笑。经过认真的思考,又提高了人们认识问题的能力。
有人把悖论分为两类。一类是逻辑和数学型悖论,是由逻辑和数学中的概念构成的。另一类是语文学悖论,是由命名和真、假等概念构成的。在数学研究中更注重第一类悖论。这类悖论的通常形式是:如果承认某命题正确,就会推出它是错误的;如果认为不正确,就会推出它是正确的。
现在用一个最简单的“说谎者悖论”作例子,这是公元前4世纪希腊哲学家欧几里得提出来的。
原命题为:“我正在说的这句话是谎话。”
如果你认为他说的话是一句真,那么根据这句话本身的内容来分析,他说的就是一句谎话。如果你认为他的话是谎话,那么既然说的是谎话,分析的结果他所说的就应该是真话。到底他说的是真话还是谎话,谁也说不清了(图149)。
类似的悖论早在公元前6世纪就有人提出来了,那是一位克里特岛的哲学家埃皮曼尼克斯提出的命题。他说:“克里特岛的人每一句话都是谎话”。试问这句话本身是真话还是谎话?如果我们认为它是真话,那么埃皮曼尼克斯本人就是克里特岛人,他的话应该是谎话。如果我们认为它是谎话,说明克里特岛人是有人讲真话的,当然这个命题就应该被否定。所以无论怎么看,都难以自圆其说。不过这个悖论与前一个的不同之处在于,它只能从肯定的前提推出否定的结果,却不能从否定的前提推出肯定的结果,因此算不上一个最典型的悖论。
悖论读来有趣,却常令科学家们感到苦恼。因为严密的科学都应该是真实可靠的。特别是数学,以严密的逻辑推理为基础,更容不得任何自相矛盾的命题或结论。例如“不在同一直线上的3点决定一个平面”的论断是正确的,那么只用两点词或同一直线上的3点或不在同一直线上的4点都不能决定一个平面。但悖论却破坏了这种严密性,它反映了数学科学并不是铁板一块,在它大厦中还存在着裂缝。它的一些概念和原理之中还存在着矛盾和不完善、不准确之外,有待于科学家们进一步探讨和解决。数学正是在不断发现和解决矛盾的过程中发展起来的。尽管从古希腊到今天,悖论给许多人带来了快乐,人们通常把它列入“趣味数学”的范畴,但那些伟大的科学家和数学家们却总是极其严肃地对待它。事实上,现代逻辑学和 *** 论中的一些巨大的进展正是努力解决了经典悖论的直接结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询