x^y-y^x=2,求dy/dx

 我来答
新科技17
2022-08-19 · TA获得超过5903个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.9万
展开全部
令x^y=u,则:ylnx=lnu,∴lnxdy/dx+y/x=(1/u)du/dx,∴u(lnxdy/dx+y/x)=du/dx,
∴du/dx=x^y·lnx·dy/dx+(y/x)x^y.
令y^x=t,则:xlny=lnt,∴lny+(x/y)dy/dx=(1/t)dt/dx,∴t[lny+(x/y)dy/dx]=dt/dx,
∴dt/dx=y^x·lny+(x/y)y^x·dy/dx.
∵x^y+y^x=2,∴u+t=2,∴du/dx+dt/dx=0,
∴[x^y·lnx·dy/dx+(y/x)x^y]+[y^x·lny+(x/y)y^x·dy/dx]=0,
∴[x^y·lnx+(x/y)y^x]dy/dx=-[(y/x)x^y+y^x·lny],
∴dy/dx=-[(y/x)x^y+y^x·lny]/[x^y·lnx+(x/y)y^x].
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式