裂项相消法的公式是什么?

 我来答
汽车解说员小达人
高能答主

2022-12-23 · 用力答题,不用力生活
知道小有建树答主
回答量:1104
采纳率:100%
帮助的人:42万
展开全部

裂项公式是:1/[n(n+1)]=(1/n)- [1/(n+1)]。1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]。1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}。

1/(3n-2)(3n+1)。

1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)。

裂项法表达式:1/[n(n+1)]=(1/n)-[1/(n+1)]。裂项相消公式有nn!=(n+1)!-n!1/[n(n+1)]=(1/n)- [1/(n+1)]等。


数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。

三大特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” 。

(3)分母上几个因数间的差是一个定值裂差型运算的核心环节是“两两抵消达到简化的目的”。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式