怎样求离散型随机变量的数学期望?

 我来答
娱乐小八卦啊a
高粉答主

2023-01-08 · 娱乐小八卦,天天都知道
娱乐小八卦啊a
采纳数:256 获赞数:117852

向TA提问 私信TA
展开全部

记D(x)为该数据的方差,E(x)为期望,则D(x)=E(x^2)-[E(x)]^2,这样就可以把E(X²)求出来,或者直接用定义法求也可以。数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

期望值是基础概率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计工具。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。


扩展资料

离散型随机变量数学期望的内涵:

在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。

但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。

参考资料来源:

百度百科——数学期望

星辰下的骆驼
2023-01-10 · TA获得超过130个赞
知道答主
回答量:64
采纳率:33%
帮助的人:1.6万
展开全部
一维离散型E(x)=∞∑i=1(xi pi),二维离散型E(x)=+∞∑i=1+∞∑j=1(xi pij)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式