如何求函数在点处的偏导数?

 我来答
一粥美食
高能答主

2023-04-01 · 专注为您带来别样视角的美食解说
一粥美食
采纳数:7300 获赞数:462685

向TA提问 私信TA
展开全部

先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c,即偏导数连续,否则不连续。

x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。


判断可导、可微、连续的注意事项:

1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。

2、二元就不满足以上的结论,在二元的情况下:

(1)偏导数存在且连续,函数可微,函数连续。

(2)偏导数不存在,函数不可微,函数不一定连续。

(3)函数不可微,偏导数不一定存在,函数不一定连续。

(4)函数连续,偏导数不一定存在,函数不一定可微。

(5)函数不连续,偏导数不一定存在,函数不可微。

对函数z求全微分得:

dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:

dz=[2xf1'+f2’/(x-y)]dx-[2yf1'+f2’/(x-y)dy,

根据全微分与偏导数的关系,得:

dz/dx=2xf1'+f2’/(x-y),

dz/dy=-[2yf1'+f2’/(x-y)。

直接求导法:

求z对x的偏导数时,把y看成常数,此时有:

dz/dx=f1'*(2x-0)+f2'*(1-0)/(x-y)

=2xf1'+f2’/(x-y);

同理,求z对y的偏导数时,x看成常数,则:

dz/dy=f1'*(0-2y)+f2'*(0-1)/(x-y)

=-2yf1'-f2'/(x-y)。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式