勾股定理的解法
勾股定理的解法以ab为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。
AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。
勾股定理的提出:
勾股定律(Pythagorean Theorem,别称:勾股弦定理、勾股定理)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。
勾股定理的意义:
1、勾股定理的证明是论证几何的发端。
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值、这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用、1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。