定积分的应用求面积
1个回答
展开全部
定积分的应用求面积如下:
积分面积公式:∫(1,e)lnxdx
分部积分法
=[xlnx](1,e)-∫(1,e)xd(lnx)
=(e-0)-∫(1,e)dx
=e-(e-1)
=e-e+1
=1
定积分的意义有很多,它可以表示一个图形的面积,也可以和物理联系在一起,定积分可以为负值,但如果你要求图形的面积,就要用到它的绝对值。
理解这个含义,需要注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。
定积分的求法如下:
第一类是凑微分,例如xdx=1/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。
第二类换元积分法,令x=x(t),自然有dx=dx(t)=x'(t)dt,这里引入新的变量,积分限要由x的变换范围换成t的变化范围。
第三类分部积分法,设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询