三阶行列式的定义
1个回答
展开全部
一个行列式可以通过拆分某一个列向量得到两个行列式的和。三阶行列式则代表三个向量组成的平行六面体的有向体积。
当行列式的有两行或者两列元素相同,它对应的空间平行六面体的两条邻边重合,相当于将三维空间中六面体压成了高度为0的二维平面。
代数余子式
行列式某元素的余子式:行列式划去该元素所在的行与列的各元素,剩下的元素按原样排列,得到的新行列式。
行列式某元素的代数余子式:行列式某元素的余子式与该元素对应的正负符号的乘积。
即行列式可以按某一行或某一列展开成元素与其对应的代数余子式的乘积之和。
三阶行列式性质
性质1:行列式与它的转置行列式相等。
性质2:互换行列式的两行(列),行列式变号。
推论:如果行列式有两行(列)完全相同,则此行列式为零。
性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询