四年级小学生奥数题大全
1.四年级小学生奥数题大全
1、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
这堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:这堆煤有6000千克。
2、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的`钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
也可以用方程解:
设一枝铅笔X元,则一本练习本为元。
8X+5×=3.8-0.45
64X+19-25X=30.4-3.6
39X=7.8
X=0.2
答:每支铅笔0.2元。
2.四年级小学生奥数题大全
1、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)
2、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
3.四年级小学生奥数题大全
1、甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2x=(22-x)×0.25-1
0.2x=5.5-0.25x-1
0.45x=4.5
x=10
22-10=12(人)
答:甲校有10人参加,乙校有12人参加。
2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求乙的存款。
答案:取40%后,存款有9600×(1-40%)=5760(元)
这时,甲有:(5760+120×2)÷2=3000(元)
甲原来有:3000÷(1-40%)=5000(元),
乙存款:9600-5000=4600(元)
4.四年级小学生奥数题大全
1、一圆形跑道周长300米,甲、乙两人分别从直径两端同时出发,若反向而行1分钟相遇,若同向而行5分钟甲可以追上乙,求甲、乙两人的。速度?2、甲乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。直到两人相遇时,这只狗一共跑了多少千米?
参考答案:
1、甲乙两人速度和:300÷2÷1=150米/分,同向时,如果甲速度快,甲要比乙多跑半圈才能追上乙,所以,甲乙两人的速度差:300÷2÷5=30米/分
所以甲的速度:(150+30)÷2=90米/分
乙的速度:(150-30)÷2=60米/分
答:甲的速度为90米/分 乙的速度为60米/分
2、100÷(6+4)=10小时
10×10=100千米
答:这只狗一共跑了100千米。
5.四年级小学生奥数题大全
1、王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?解答:三人报名参加比赛,彼此互不影响独立报名。所以可以看成是分三步完成,即一个人一个人地去报名。首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法。其次,赵明去报名,也有4种不同的报名方法。同样,李刚也有4种不同的报名方法。满足乘法原理的条件,可由乘法原理解决。
解:由乘法原理,报名的结果共有4×4×4=64种不同的情形。
2、由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
解答:
分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的`数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决。
解:由1、2、3、4、5、6共可组成3×4×5×3=180个没有重复数字的四位奇数。
6.四年级小学生奥数题大全
1、甲乙两地相距8800千米,一辆汽车从甲地开往乙地,每小时行78千米,另一辆汽车从乙地开往甲地,每小时行65千米。两车从两地相对开出4小时后,两车相距多少千米?
2、甲、乙两列火车从两地相对行驶。甲车每小时行78千米。乙车每小时行62千米。甲车开出后1小时,乙车才开出,再过3小时两车相遇。两地间的铁路长多少千米?
3、两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行65千米,乙车平均每小时行62千米。经过3小时,两车相距多少千米?
4、一辆汽车和一辆摩托车同时从相距378千米的两地出发,相对开出。汽车每小时行72千米,是摩托车速度的2倍,经过多长时间两车相遇?
5、辆汽车从甲地到乙地共要行驶580千米,用了6小时。途中一部分公路是高速公路,另一部分是普通公路。已知汽车在高速公路上每小时行120千米,在普通公路上每小时行80千米。汽车在高速公路上行驶了多少千米?
7.四年级小学生奥数题大全
1、找规律填数1、2、4、7、11、16、22、()
2、被减数、减数、差相加的和是100,被减数是()。
3、连续5个自然数的和是50,从小到大排列,第三个数是()。
4、两个数相除,商是5,余数是20,除数是()。
5、小强今年11岁,小军今年17岁,当两人的年龄和是38岁时,小强()岁。
6、小华上体育课,站队时,从前向后数他是第10个,从后向前数他是第15个,问这队共有()人。
7、小于10000而又与10000最接近的自然数是()。
8、一个六位数,它的十万位、千位和百位上都是5,其余各位都是0,这个数是()。
9、一个八位数,高位是7,任意相邻的数位上的数字相差3,最低位上是()。
8.四年级小学生奥数题大全
1、一列火车早上5时从甲地开往乙地,按原计划每小时行驶120千米,下午3小时到达乙地,但实际到达时间是下午5时整,晚点2小时,问火车实际每小时行驶多少千米?
2、小猴上山摘桃子,它把摘到的桃子先平均分成5堆,4堆送给他的好朋友,自己留下一堆,后来他又把留下的这一堆平均分成4堆,3堆送给小山羊,一堆自己吃,自己吃的这一堆有6个桃子,小猴一共摘了多少个桃子?
3、用一个杯子向一个空瓶子里倒牛奶,连瓶子共重450克,如果倒进5杯牛奶连瓶子共重750克,一杯牛奶和一个空瓶各重多少克?
4、一共有红、黄、绿三种颜色的珠子120粒。如果把红色珠子分放在9个盒子里,把黄色珠子分放在6个盒子里,把绿色珠子分放在5个盒子里,那么每个盒子里的珠子粒数相等。三种颜色的珠子各多少粒?
5、在6个筐里放着同样多的鸡蛋。如果从每个筐里拿出50个鸡蛋,则6个筐里剩下的鸡蛋个数的总和等于原来两个筐里鸡蛋个数的总和。原来每个筐里有鸡蛋多少个?
9.四年级小学生奥数题大全
1、一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成。
2、某机床厂第一车间的职工,用18台车床,2小时生产机器零件720件,20台这样的车床3小时可生产机器零件_____件。
3、4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨。现在有煤77吨,用一辆大卡车和小卡车同时运_____次运完。
4、某车间接到任务,要在15天制造12000个零件。后来任务增加28%日产量也提高。这样_____天完成。
5、8个人10天修路840米,照这样算,20人修4200米,要_____天。
10.四年级小学生奥数题大全
1、学校组织新年游艺晚会,用于奖品的铅笔、圆珠笔和钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。问:三种笔各有多少支?
2、5元1千克的茶叶和8元1千克的茶叶共10千克,用去71元。问:两种茶叶各有多少千克?
3、某运输队为商店运输暖瓶500箱,每箱6个暖瓶。已知每10个暖瓶的运费为5.5元,如果损坏一个暖瓶,要赔偿成本11.5元(这只暖瓶的运费当然得不到),结果运输队共得到1553.6元。问:共损坏了多少只暖瓶?
4、有一堆土共400方,有大小两辆汽车,大车一次拉7方,小车一次拉4方,运完这堆土共拉了70车。问:大车拉了几次?
5、某人徒步旅行,平路每天走38千米,山路每天走23千米,他15天共走了450千米。问:这期间他走了多少千米山路?