二分法和牛顿迭代法的区别

 我来答
芷水轩
2023-03-31 · TA获得超过122个赞
知道小有建树答主
回答量:510
采纳率:100%
帮助的人:31.9万
展开全部

二分法和牛顿迭代法的区别是牛顿迭代法不能收敛,但是大多数情况下它效果都非常好。二分法固定每次缩短一半的区间,而牛顿迭代法的迭代效率往往更高。

1、二分法的本质就是查找空间折半,至于函数递增或者是数组当中元素递增都只是表象,只是我们进行折半的条件。换句话说如果我们能找到其他的条件来折半搜索空间,那么我们一样可以得到二分的效果,并不用拘泥于是否有序。

2、虽然少数情况下牛顿迭代法不能收敛,但是大多数情况下它效果都非常好。牛顿迭代法的迭代效率往往更高,一般情况下使用牛顿迭代法可以获得更快的收敛速度。

3、和二分法相比,牛顿迭代法的公式也并不难写,并且它在机器学习当中也有应用,学会它真的非常划算!

牛顿迭代法的介绍:

1、牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

2、多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数的泰勒级数的前面几项来寻找方程的根。

3、牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式