怎样用导数公式求极限?
24个基本求导公式
1、C′=0 (C为常数)
2、(x∧n)′=nx∧(n-1)
3、(sinx)′=cosx
4、(cosx)′=-sinx
5、(lnx)′=1/x
6、(e∧x)′=e∧x
7、(logaX)'=1/(xlna)
8、(a∧x)'=(a∧x)*lna
9、(u±v)′=u′±v′
10、(uv)′=u′v+uv′
11、(u/v)′=(u′v-uv′)/v
12、(f(g(x))′=(f(u))′(g(x))′. u=g(x)
13、y=c(c为常数) y'=0
14、y=x^n y'=nx^(n-1)
15、y=a^x y'=a^xlna
y=e^x y'=e^x
16、y=logax y'=logae/x
y=lnx y'=1/x
17、y=sinx y'=cosx
18、y=cosx y'=-sinx
19、y=tanx y'=1/cos^2x
20、y=cotx y'=-1/sin^2x
21、y=arcsinx y'=1/√1-x^2
22、y=arccosx y'=-1/√1-x^2
23、y=arctanx y'=1/1+x^2
24、y=arccotx y'=-1/1+x^2
基本导数公式有:(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。