什么是正交矩阵?举个例子。
展开全部
正交矩阵举例:
若A=[r11r12r13;r21r22r23;r31r32r33],则有:
如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵,但正交矩阵不一定是实矩阵
扩展资料:
正交矩阵定理:
在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
4、A的列向量组也是正交单位向量组。
5、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵 。
参考资料来源:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询