求曲线积分详解
百度百科原文:先看一个例子:设有一曲线形构件占xOy面上的一段曲线,设构件的密度分布函数为ρ(x,y),设ρ(x,y)定义在L上且在L上连续,求构件的质量。对于密度均匀的...
百度百科原文:先看一个例子:设有一曲线形构件占xOy面上的一段曲线 ,设构件的密度分布函数为ρ(x,y),设ρ(x,y)定义在L上且在L上连续,求构件的质量。对于密度均匀的物件可以直接用ρS求得质量;对于密度不均匀的物件,就需要用到曲线积分,dm=ρ(x,y)ds;所以m=∫ρ(x,y)ds;L是积分路径,∫ρ(x,y)ds就叫做对弧长的曲线积分。
首先,这个密度分布函数是个什么东西?怎么是二元的?(两个自变量)
还有,如果我没说错,二元函数怎么会在L上且在L上连续?(因为上面有个图,L分明是一元函数曲线,二元函数能在一元函数曲线上连续?)
以及,dm=ρ(x,y)ds咋来的?也没个过程。
对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。这个也看不懂,望高人指点迷津! 展开
首先,这个密度分布函数是个什么东西?怎么是二元的?(两个自变量)
还有,如果我没说错,二元函数怎么会在L上且在L上连续?(因为上面有个图,L分明是一元函数曲线,二元函数能在一元函数曲线上连续?)
以及,dm=ρ(x,y)ds咋来的?也没个过程。
对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。这个也看不懂,望高人指点迷津! 展开
1个回答
展开全部
首先我先解释一下,你例子中的这个积分是第一型曲线积分,也可以说第一型曲线积分是由这个物理问题抽象出来的数学公式。
下面我来回答你的问题。
1.这个密度分布函数是个什么东西?怎么是二元的?(两个自变量)
答:这个问题我分2方面回答你,首先说明密度与位置的关系,其次说明为什么函数是二元的。
1)所谓的密度分布函数,就是这个零件在某一点上的密度,由于这个零件有可能不是均匀材质制作的,所以这个零件的不同位置的密度也不完全相同,即密度随位置的变化而变化。所以密度是位置的函数。
2)我们应该看到,这个零件是放在x0y平面上的,即当x取某一个值时,y的取值并不唯一(例如这个零件是一个圆环),所以如果位置仅有x确定,则密度有可能有1个或者1个以上的数值,所以位置需要有两个变量(即x,y)决定,即它是二元函数。
2.二元函数怎么会在L上且在L上连续?(因为上面有个图,L分明是一元函数曲线,二元函数能在一元函数曲线上连续?)
答:这个图我没有看,不清楚,但是我想这个L应该是一个曲线,由第一问可以知道,这个函数是一个二元函数,所以其定义域是二元的,这条曲线L并不是一元函数,而是二元的定义域。
3.dm=ρ(x,y)ds咋来的?
答:这个是微分的表达式,你可以这样理解,s就是面积,ds就是很小的面积;
m是质量,dm就是在ds上的质量,当ds很小的时候近似为一个点,而它的密度是ρ(x,y),所以他的质量就是dm=ρ(x,y)ds
4.∫P(x,y)dx+Q(x,y)dy
答:这个是第二型曲线积分,是根据变力在路径上做功这个物理模型抽象出来的数学积分。如果你还是不能理解,可以看看《数学分析》,或者看看有关第一型曲线积分和第二型曲线积分的介绍
下面我来回答你的问题。
1.这个密度分布函数是个什么东西?怎么是二元的?(两个自变量)
答:这个问题我分2方面回答你,首先说明密度与位置的关系,其次说明为什么函数是二元的。
1)所谓的密度分布函数,就是这个零件在某一点上的密度,由于这个零件有可能不是均匀材质制作的,所以这个零件的不同位置的密度也不完全相同,即密度随位置的变化而变化。所以密度是位置的函数。
2)我们应该看到,这个零件是放在x0y平面上的,即当x取某一个值时,y的取值并不唯一(例如这个零件是一个圆环),所以如果位置仅有x确定,则密度有可能有1个或者1个以上的数值,所以位置需要有两个变量(即x,y)决定,即它是二元函数。
2.二元函数怎么会在L上且在L上连续?(因为上面有个图,L分明是一元函数曲线,二元函数能在一元函数曲线上连续?)
答:这个图我没有看,不清楚,但是我想这个L应该是一个曲线,由第一问可以知道,这个函数是一个二元函数,所以其定义域是二元的,这条曲线L并不是一元函数,而是二元的定义域。
3.dm=ρ(x,y)ds咋来的?
答:这个是微分的表达式,你可以这样理解,s就是面积,ds就是很小的面积;
m是质量,dm就是在ds上的质量,当ds很小的时候近似为一个点,而它的密度是ρ(x,y),所以他的质量就是dm=ρ(x,y)ds
4.∫P(x,y)dx+Q(x,y)dy
答:这个是第二型曲线积分,是根据变力在路径上做功这个物理模型抽象出来的数学积分。如果你还是不能理解,可以看看《数学分析》,或者看看有关第一型曲线积分和第二型曲线积分的介绍
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询