展开全部
y'+y=0,即dy/dx=-y,分离变量得:
dy/-y=dx,两边同时微分得
∫dy/-y=∫dx,即-lny+lnC=x(C为常数)
所以x=lnC/y,即通解为e^x=C/y(C为常数)
扩展资料:
通解和特解的区别
一、性质不同
1、通解:对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。
2、特解:这个方程的所有解当中的某一个。
二、形式不同
1、通解:通解中含有任意常数。
2、特解:特解中不含有任意常数,是已知数。
通解的求法:
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。
展开全部
y'+y=0,即dy/dx=-y,分离变量得
dy/-y=dx,两边同时微分得
∫dy/-y=∫dx,即-lny+lnC=x(C为常数)
所以x=lnC/y,即通解为e^x=C/y(C为常数).
dy/-y=dx,两边同时微分得
∫dy/-y=∫dx,即-lny+lnC=x(C为常数)
所以x=lnC/y,即通解为e^x=C/y(C为常数).
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
方程x+1=0
x=-1
通解形式y=Ae^(-x)
x=-1
通解形式y=Ae^(-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询