六年级数学工程问题解决方法
我觉得工程问题非常难,找不到解决的方法。希望给我讲解一下工程问题的解放方法,还有工程问题的公式。谢谢!...
我觉得工程问题非常难,找不到解决的方法。希望给我讲解一下工程问题的解放方法,还有工程问题的公式。
谢谢! 展开
谢谢! 展开
展开全部
在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 ——工作量=工作效率×时间
在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子.:一件工作,甲做15天可完成,乙做10天可完成.问两人合作几天可以完成? 一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位, 再根据基本数量关系式,得到 所需时间=工作量÷工作效率 =6(天)• 两人合作需要6天. 这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的。为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30。设全部工作量为30份,那么甲每天完成2份,乙每天完成3份,两人合作所需天数是 30÷(2+ 3)= 6(天) 如果用数计算,更方便. 3:2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是10∶15=2∶3
参考资料:百度百科
在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子.:一件工作,甲做15天可完成,乙做10天可完成.问两人合作几天可以完成? 一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位, 再根据基本数量关系式,得到 所需时间=工作量÷工作效率 =6(天)• 两人合作需要6天. 这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的。为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30。设全部工作量为30份,那么甲每天完成2份,乙每天完成3份,两人合作所需天数是 30÷(2+ 3)= 6(天) 如果用数计算,更方便. 3:2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是10∶15=2∶3
参考资料:百度百科
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询