高中数学平面几何问题,写出详细过程,谢谢~

如图,空间四边形ABCD,角BCD=90°,AD⊥平面BCD,BC=CD=2,AD=4,求直线AD与平面ABC所成角的正切值。... 如图,空间四边形ABCD,角BCD=90°,AD⊥平面BCD,BC=CD=2,AD=4,求直线AD与平面ABC所成角的正切值。 展开
lisheng551
2010-07-13 · TA获得超过149个赞
知道答主
回答量:215
采纳率:0%
帮助的人:169万
展开全部

解: 请结合图形 看解答

        取 过D作DE⊥AC ,现在证明AE与AD的夹角就是AD与平面ABC的夹角

                                即证明  DE是垂直与平面ABC

         因为   AD⊥平面ADC

         所以   AD⊥BC

      又    角BCD=90°

          ==>  BC⊥CD

        BC⊥CD 且  BC⊥AD  所以  BC⊥平面ADC  

       

           由 BC⊥平面ADC    得到  BC⊥DE    ………………(1)

      DE⊥AC  DE⊥BC  ==》 DE⊥平面ABC

      那么  AD与平面ABC的夹角就是 角DAE

          tanA=DC/AD=1/2

CYZCYD
2010-07-14 · TA获得超过1083个赞
知道小有建树答主
回答量:247
采纳率:0%
帮助的人:373万
展开全部

这是平面几何么
用空间向量保证没有做不出来的立体几何题目
比起各种各样的方法简单好学多了

答案是1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
TingFangXin
2010-07-13 · TA获得超过1954个赞
知道小有建树答主
回答量:600
采纳率:0%
帮助的人:1000万
展开全部
BC⊥CD,BC⊥AD=>BC⊥ACD=>ABC⊥ACD
过D作DF⊥AC,则DF⊥面ABC
角DAC即AD与面ABC所成角
tan=CD/AD=1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
maorongyu123
2010-07-13 · TA获得超过587个赞
知道小有建树答主
回答量:232
采纳率:100%
帮助的人:0
展开全部
等积法,过D点做平面ABC的垂线记高为h交于点EAC^2=20,bc^2=4,AB^2=24。所以AC垂直BC,1/3Sabc*h=1/3Sbcd*AD所以h=(4#5)/5,#为根号。有勾股定理得AE^2=64/5,所以正切值为1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式