矩阵相似与矩阵合同有什么区别

 我来答
百度网友790c632
推荐于2019-08-05 · TA获得超过8740个赞
知道答主
回答量:1
采纳率:0%
帮助的人:822
展开全部

矩阵相似与矩阵合同具体的不同点在于:

1、矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。

2、矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。

简而言之,相似就是两个矩阵经过初等变换能从A变到B,此时有相同的秩,特征值;合同就是两个矩阵有相同的正负惯性指数来进行判断。

扩展资料

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 

无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

参考资料:百度百科:矩阵

小溪趣谈电子数码
高粉答主

2019-07-21 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584750

向TA提问 私信TA
展开全部

一、应用不同

1、矩阵相似:利用矩阵对角化计算矩阵多项式;利用矩阵对角化求解线性微分方程组;利用矩阵对角化求解线性方程组。

2、矩阵合同:空间曲面的一般形式化成我们熟知的空间曲面的研究有帮助。

二、判别方式不同

1、矩阵相似:判断特征值是否相等;判断行列式是否相等;判断迹是否相等;判断秩是否相等。

2、矩阵合同:设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同;设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。

三、二者性质不同

1、矩阵相似:两者的秩相等;两者的行列式值相等;两者的迹数相等;两者拥有同样的特征值,尽管相应的特征向量一般不同;两者拥有同样的特征多项式;两者拥有同样的初等因子。

2、矩阵合同:反身性,任意矩阵都与其自身合同;对称性,A合同于B,则可以推出B合同于A;,传递性:A合同于B,B合同于C,则可以推出A合同于C;,合同矩阵的秩相同。

参考资料来源:百度百科-合同矩阵

百度百科-相似矩阵

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
教育小百科达人
推荐于2019-10-14 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

区别:

矩阵相似与矩阵合同具体的不同点在于:

1 矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。

2 矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。

总结:矩阵的相似和矩阵的合同都是由线性空间中坐标系的转换引起的。我们在线性空间中定义矩阵和向量的乘法,并将矩阵理解成线性空间中“运动”的施加,变换坐标系之后,同一个“运动”在不同坐标系下是相似的关系。我们在线性空间中定义向量的内积(或者说双线性型),同一个双线性型运算在不同坐标系下相差合同矩阵。之所以要换坐标系,就是为了在最简单的坐标系下看清问题的本质!

扩展资料:

在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。

定理1

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。

注: 定理的证明过程实际上已经给出了把方阵对角化的方法。

若矩阵可对角化,则可按下列步骤来实现:

(1) 求出的全部特征值;

(2)对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

(3)上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

推论1

若n阶矩阵A有n个相异的特征值,则A与对角矩阵相似。

对于n阶方阵A,若存在可逆矩阵P, 使其为对角阵,则称方阵A可对角化。

定理2 

n阶矩阵A可对角化的充要条件是对应于A的每个特征值的线性无关的特征向量的个数恰好等于该特征值的重数,即设是矩阵A的重特征值。

定理3 

对任意一个n阶矩阵A,都存在n阶可逆矩阵T使得即任一n阶矩阵A都与n阶约当矩阵J相似。

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B ,则称方阵A合同于矩阵B.

一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。

相似矩阵与合同矩阵的秩都相同。

参考资料:百度百科-合同矩阵  百度百科-相似矩阵

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活达人一见梅
推荐于2017-10-12 · 知道合伙人金融证券行家
生活达人一见梅
知道合伙人金融证券行家
采纳数:1263 获赞数:10971
现任餐饮营养监督及管理

向TA提问 私信TA
展开全部

  一、矩阵相似是指:设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)*A*P=B成立,则称矩阵A与B相似,记为A~B.("P^(-1)"表示P的-1次幂,也就是P的逆矩阵, "*" 表示乘号, "~" 读作"相似于".)

  二、它的性质如下:

  1. 设A,B和C是任意同阶方阵,则有:

  (1)A~A

  (2) 若A~B,则B~A

  (3) 若A~B,B~C,则A~C

  (4) 若A~B,则r(A)=r(B),|A|=|B|

  (5) 若A~B,且A可逆,则B也可逆,且B~A。

  (6) 若A~B,则A与B有相同的特征方程,有相同的特征值。

  若A与对角矩阵相似,则称A为可对角化矩阵,若n阶方阵A有n个线性

  无关的特征向量,则称A为单纯矩阵。

  三、矩阵合同是指合同矩阵:两个实对称矩阵A和B,如存在可逆矩阵P,使得就称矩阵A和B互为合同矩阵,并且称由A到B的变换叫合同变换。

  四、合同矩阵的性质如下:

  1. 反身性:任意矩阵都与其自身合同;

  2. 对称性:A合同于B,则可以推出B合同于A;

  3. 传递性:A合同于B,B合同于C,则可以推出A合同于C;

  4. 合同矩阵的秩相同。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
paggnini
2010-07-13 · TA获得超过734个赞
知道小有建树答主
回答量:365
采纳率:0%
帮助的人:151万
展开全部
本质的区别就是矩阵相似,若当块不变(就是简单当成特征值不变)。
矩阵合同,保持特征值的符号(即正负号)不变。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式