已知a²+4a+1=0且2a³+ma²+2a/a的四次方+ma²+1=3,求m的值

Ar3sgice
2010-07-13 · TA获得超过3261个赞
知道小有建树答主
回答量:859
采纳率:0%
帮助的人:1006万
展开全部
a^2 = -4a-1

(2a(-4a-1) + m(-4a-1) + 2a) / ((-4a-1)^2 + m(-4a-1) + 1)

= (-8(-4a-1)-2a + (-4am-m) + 2a) / (16a^2+8a+1 + (-4am-m) + 1)

= (32a+8 + (-4am-m) ) / (16(-4a-1)+8a+1 + (-4am-m) + 1)

= (32a+8 + (-4am-m) ) / (-64a-16+8a+1 + (-4am-m) + 1)

= (32a+8 + (-4am-m) ) / (-56a-14 + (-4am-m) ) = 3

32a+8 + (-4am-m) = - 168a - 42 - 12am - 3m

200a + 50 + 8am + 2m = 0

(8a+2)m = -200a-50

m = (-100a-25)/(4a+1)

= -25.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式