怎么求函数的最大值和最小值
就是数学必修一里面的内容:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么...
就是数学必修一里面的内容:
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0)=M
那么,我们称M是函数y=f(x)的最大值~~~~
我没有理解这句话,而且最大值要怎么求?? 展开
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0)=M
那么,我们称M是函数y=f(x)的最大值~~~~
我没有理解这句话,而且最大值要怎么求?? 展开
1个回答
2013-11-12
展开全部
要看是什么样的函数了;如果是一次函数的话那么在闭区间[a,b]在起点和终点的函数值分别是它的最小和最大值;如果是二次函数的话就要分情况来讨论了,(1)开口向上的时候,在定义域内有最小值;若是给一个区间范围还要看看这个区间包括顶点和不包括顶点两个类,包括顶点那么顶点就是函数的最小值,不包括顶点的是后如果区间在函数对称轴的右侧那么起点的函数值是最小值,如果区间在函数对称轴的左侧那么终点的函数值是最小值;(2)开口向下的时候,在定义域内有最大值;若是给定一个区间范围也要看这个区间是否包括顶点;如果包括顶点那么顶点的纵坐标就是函数的最大值,如果不包括顶点的且区间在对称轴的左侧那么终点是函数的最大值,相反起点的函数值是函数的最大值;还有指数函数对数函数的最值的求法,都要讨论函数在所给的定义域内的单调性;然后再来求函数的最值。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询