
已知函数f(x)=sin2x-2根号3sin^2x-根号3+1,求f(x)的最小正周期及其单调增区间
1个回答
展开全部
答:f(x)=sin2x-2√3(sinx)^2-√3+1
=sin2x+√3(1-2(sinx)^2]-2√3+1
=sin2x+√3cos2x-2√3+1
=2*[(1/2)sin2x+(√3/2)cos2x]-2√3+1
=2sin(2x+π/3)-2√3+1
最小正周期T=2π/2=π
单调递增区间满足:
2kπ-π/2<=2x+π/3<=2kπ+π/2
kπ-5π/12<=x<=kπ+π/12
所以:单调递增区间为[kπ-5π/12,kπ+π/12],k属于Z
=sin2x+√3(1-2(sinx)^2]-2√3+1
=sin2x+√3cos2x-2√3+1
=2*[(1/2)sin2x+(√3/2)cos2x]-2√3+1
=2sin(2x+π/3)-2√3+1
最小正周期T=2π/2=π
单调递增区间满足:
2kπ-π/2<=2x+π/3<=2kπ+π/2
kπ-5π/12<=x<=kπ+π/12
所以:单调递增区间为[kπ-5π/12,kπ+π/12],k属于Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询