已知函数f(x)=sin²ωx+√3sinωxsin(ωx+π/2)(ω>0)的最小正周期为π (
已知函数f(x)=sin²ωx+√3sinωxsin(ωx+π/2)(ω>0)的最小正周期为π(1)求ω的值(2)求函数f(x)在区间[0,2π/3]上的取值范...
已知函数f(x)=sin²ωx+√3sinωxsin(ωx+π/2)(ω>0)的最小正周期为π
(1)求ω的值
(2)求函数f(x)在区间[0,2π/3]上的取值范围 展开
(1)求ω的值
(2)求函数f(x)在区间[0,2π/3]上的取值范围 展开
展开全部
(1)解析:∵函数f(x)=sin^2wx+√3sinwxsin(π/2+wx) (w>0) 的最小正周期为π
f(x)=sin^2wx+√3sinwxsin(π/2+wx)=1/2-1/2cos2wx+√3/2sin2wx
=sin(2wx-π/6)+1/2
∵T=π==>2w=2==>w=1
∴f(x)=sin(2x-π/6)+1/2
∴单调递增区间:2kπ-π/2<=2x-π/6<=2kπ+π/2==>kπ-π/6<=x<=kπ+π/3
(2)解析:∵在区间[0,2π/3]上
f(0)=sin(-π/6)+1/2=0
f(π/3)=sin(2π/3-π/6)+1/2=3/2
f(2π/3)=sin(4π/3-π/6)+1/2=0
∴f(x)在区间[0, 2π/3]上的取值范围[0,3/2]
f(x)=sin^2wx+√3sinwxsin(π/2+wx)=1/2-1/2cos2wx+√3/2sin2wx
=sin(2wx-π/6)+1/2
∵T=π==>2w=2==>w=1
∴f(x)=sin(2x-π/6)+1/2
∴单调递增区间:2kπ-π/2<=2x-π/6<=2kπ+π/2==>kπ-π/6<=x<=kπ+π/3
(2)解析:∵在区间[0,2π/3]上
f(0)=sin(-π/6)+1/2=0
f(π/3)=sin(2π/3-π/6)+1/2=3/2
f(2π/3)=sin(4π/3-π/6)+1/2=0
∴f(x)在区间[0, 2π/3]上的取值范围[0,3/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询