一元二次方程式怎么解?
3个回答
展开全部
一般解法
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
展开全部
判别式法
利用一元二次方程根的判别式(△=b-4ac)判断方程的根的情况。
一元二次方程
的根与
有如下关系:
①当
时,方程有两个不相等的实数根;
②当
时,方程有两个相等的实数根;
③当
时,方程无实数根,方程有2个不相等的复数根.
上述结论反过来也成立.开方法
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7
3x+1=±√7
x=…
∴x1=…,x2=…
因式分解法
(1)因式分解法解一元二次方程的意义
因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法。
因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学化归思想)。
(2)因式分解法解一元二次方程的一般步骤:
①移项,使方程的右边化为零;
②将方程的左边分解为两个一次因式的乘积;
③令每个因式分别为零,得到两个一元一次方程;
④解这两个一元一次方程,它们的解就都是原方程的解.
根与系数的关系(韦达定理)
十字相乘法
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
例5:用十字相乘法解下列方程:
解: m2+4m-12=0
∵m, -2
m, 6
∴(m-2)(m+6)=0
∴m-2=0或m+6=0
∴m1=2;m2=-6
配方法
例一:用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:
方程两边都加上一次项系数一半的平方:
配方:
直接开平方得:
∴
,
.
∴原方程的解为
,
.
计算机法
利用一元二次方程根的判别式(△=b-4ac)判断方程的根的情况。
一元二次方程
的根与
有如下关系:
①当
时,方程有两个不相等的实数根;
②当
时,方程有两个相等的实数根;
③当
时,方程无实数根,方程有2个不相等的复数根.
上述结论反过来也成立.开方法
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7
3x+1=±√7
x=…
∴x1=…,x2=…
因式分解法
(1)因式分解法解一元二次方程的意义
因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法。
因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学化归思想)。
(2)因式分解法解一元二次方程的一般步骤:
①移项,使方程的右边化为零;
②将方程的左边分解为两个一次因式的乘积;
③令每个因式分别为零,得到两个一元一次方程;
④解这两个一元一次方程,它们的解就都是原方程的解.
根与系数的关系(韦达定理)
十字相乘法
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
例5:用十字相乘法解下列方程:
解: m2+4m-12=0
∵m, -2
m, 6
∴(m-2)(m+6)=0
∴m-2=0或m+6=0
∴m1=2;m2=-6
配方法
例一:用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:
方程两边都加上一次项系数一半的平方:
配方:
直接开平方得:
∴
,
.
∴原方程的解为
,
.
计算机法
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有公式法、配方法、十字相乘法
~希望对你有帮助,请及时点击【采纳为满意回答】按钮~
~手机提问的朋友在客户端右上角评价点【满意】即可~
~你的采纳是我前进的动力~~
~希望对你有帮助,请及时点击【采纳为满意回答】按钮~
~手机提问的朋友在客户端右上角评价点【满意】即可~
~你的采纳是我前进的动力~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询