数学因式分解,高手求解!

みひ黛丽絲※
2013-12-07
知道答主
回答量:10
采纳率:0%
帮助的人:6.1万
展开全部
这个在解题时是一个很好用的方法,也很简单。
这种方法有两种情况。
①x2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .
例1:x2-2x-8
=(x-4)(x+2)
②kx2+mx+n型的式子的因式分解
如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).
例2:分解7x2-19x-6
图示如下:a=1 b=7 c=2 d=-3

因为 -3×7=-21,1×2=2,且-21+2=-19,
所以,原式=(7x+2)(x-3).
十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。
例3:6X2+7X+2
第1项二次项(6X2)拆分为:2×3
第3项常数项(2)拆分为:1×2
2(X) 3(X)
1 2
对角相乘:1×3+2×2得第2项一次项(7X)
纵向相乘,横向相加。
与之对应的还有双十字相乘法,也可以学一学。
拆添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。
例如:x2+3x-40
=x2+3x+2.25-42.25
=(x+1.5)2-(6.5)2
=(x+8)(x-5).
试根法
对于多项式f(x),如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数
2.对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元。
例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则
原式=(y+1)(y+2)-12
=y2+3y+2-12=y2+3y-10
=(y+5)(y-2)
=(x2+x+5)(x2+x-2)
=(x2+x+5)(x+2)(x-1).
综合除法
令多项式f(x)=0,求出其根为x1,x2,x3,……,xn,则该多项式可分解为f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x4+7x3-2x2-13x+6时,令2x4 +7x3-2x2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x4+7x3-2x2-13x+6=(2x-1)(x+3)(x+2)(x-1).
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1,x2,x3,……xn ,则多项式可因式分解为f(x)= f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn).
与方法⑼相比,能避开解方程的繁琐,但是不够准确。
主元法
例如在分解x3+2x2-5x-6时,可以令y=x3+2x2-5x-6.
作出其图像,与x轴交点为-3,-1,2
则x3+2x2-5x-6=(x+1)(x+3)(x-2).
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例如在分解x3+9x2+23x+15时,令x=2,则
x3+9x2+23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7 .
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。
待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例如在分解x4-x3-5x2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。
于是设x4-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)

相关公式
=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd
由此可得
a+c=-1,
ac+b+d=-5,
ad+bc=-6,
bd=-4.
解得a=1,b=1,c=-2,d=-4.
则x4-x3-5x2-6x-4=(x2+x+1)(x2-2x-4).
也可以参看右图。
智慧者第一
2013-12-07 · TA获得超过372个赞
知道答主
回答量:115
采纳率:0%
帮助的人:41.1万
展开全部
给题目撒'''
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友3c8939a
2013-12-07 · 超过30用户采纳过TA的回答
知道答主
回答量:122
采纳率:100%
帮助的人:75.2万
展开全部
题目呢???????????
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式