高一数学三角函数的诱导公式,高手讲解,
3个回答
2013-12-15
展开全部
锐角三角函数 在直角三角形ABC中,a、b、c分别是∠A、∠B、∠C的对边,∠C为直角。则定义以下运算方式: sin A=∠A的对边长/斜边长,sin A记为∠A的正弦; cos A=∠A的邻边长/斜边长,cos A记为∠A的余弦; tan A=∠A的对边长/∠A的邻边长,tan A记为∠A的正切; 当∠A为锐角时sin A、cos A、tan A统称为“锐角三角函数”。 常见三角函数 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。 在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法: 基本函数英文表达式语言描述正弦函数Sinesin θ=y/r角θ的对边比斜边余弦函数Cosinecos θ=x/r角θ的邻边比斜边 正切函数Tangenttan θ=y/x角θ的对边比邻边余切函数Cotangentcot θ=x/y角θ的邻边比对边正割函数Secantsec θ=r/x角θ的斜边比邻边余割函数Cosecantcsc θ=r/y角θ的斜边比对边在初高中教学中,主要研究正弦、余弦、正切三种函数。 注:tan、cot曾被写作tg、ctg,现已不用这种写法。 /----------------------------------------------------------------------------------/ 诱导公式的表格以及推导方法(定名法则和定号法则)
sinβcosβ tanβcotβsecβcscβ2kπ+αsinαcosαtanαcotαsecαcscα(1/2)kπ-αcosαsinαcotαtanαcscαsecα(1/2)kπ+αcosα-sinα-cotα-tanα-cscαsecαkπ-αsinα-cosα-tanα-cotα-secαcscαkπ+α-sinα-cosαtanαcotα-secα-cscα(3/2)kπ-α-cosα-sinαcotαtanα-cscα-secα(3/2)kπ+α-cosαsinα-cotα-tanαcscα-secα2kπ-α-sinαcosα-tanα-cotαsecα-cscα﹣α-sinαcosα-tanα-cotαsecα-cscα 定名法则 90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变” 定号法则 将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限” 2在Kπ/中如果K为奇数时函数名不变,若为偶数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。) 比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~ 还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα 两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式 sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α tan(2α)=2tanα/(1-tan²α) cot(2α)=(cot²α-1)/(2cotα) sec(2α)=sec²α/(1-tan²α) csc(2α)=1/2*secα·cscα 三倍角公式 sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1) n倍角公式 sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-… cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-… 半角公式 sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1)) 辅助角公式 Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)) Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B)) 万能公式 sin(a)= (2tan(a/2))/(1+tan²(a/2)) cos(a)= (1-tan²(a/2))/(1+tan²(a/2)) tan(a)= (2tan(a/2))/(1-tan²(a/2)) 降幂公式 sin²α=(1-cos(2α))/2=versin(2α)/2 cos²α=(1+cos(2α))/2=covers(2α)/2 tan²α=(1-cos(2α))/(1+cos(2α)) 三角和的三角函数 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 其它公式 1+sin(a)=(sin(a/2)+cos²(a/2)) 1-sin(a)=(sin(a/2)-cos²(a/2)) csc(a)=1/sin(a) sec(a)=1/cos(a) cos30°=sin60° sin30°=cos60° 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos²α 1-cos2α=2sin²α 1+sinα=[sin(α/2)+cos(α/2)]²;
sinβcosβ tanβcotβsecβcscβ2kπ+αsinαcosαtanαcotαsecαcscα(1/2)kπ-αcosαsinαcotαtanαcscαsecα(1/2)kπ+αcosα-sinα-cotα-tanα-cscαsecαkπ-αsinα-cosα-tanα-cotα-secαcscαkπ+α-sinα-cosαtanαcotα-secα-cscα(3/2)kπ-α-cosα-sinαcotαtanα-cscα-secα(3/2)kπ+α-cosαsinα-cotα-tanαcscα-secα2kπ-α-sinαcosα-tanα-cotαsecα-cscα﹣α-sinαcosα-tanα-cotαsecα-cscα 定名法则 90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变” 定号法则 将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限” 2在Kπ/中如果K为奇数时函数名不变,若为偶数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。) 比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~ 还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα 两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式 sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α tan(2α)=2tanα/(1-tan²α) cot(2α)=(cot²α-1)/(2cotα) sec(2α)=sec²α/(1-tan²α) csc(2α)=1/2*secα·cscα 三倍角公式 sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1) n倍角公式 sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-… cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-… 半角公式 sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1)) 辅助角公式 Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)) Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B)) 万能公式 sin(a)= (2tan(a/2))/(1+tan²(a/2)) cos(a)= (1-tan²(a/2))/(1+tan²(a/2)) tan(a)= (2tan(a/2))/(1-tan²(a/2)) 降幂公式 sin²α=(1-cos(2α))/2=versin(2α)/2 cos²α=(1+cos(2α))/2=covers(2α)/2 tan²α=(1-cos(2α))/(1+cos(2α)) 三角和的三角函数 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 其它公式 1+sin(a)=(sin(a/2)+cos²(a/2)) 1-sin(a)=(sin(a/2)-cos²(a/2)) csc(a)=1/sin(a) sec(a)=1/cos(a) cos30°=sin60° sin30°=cos60° 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos²α 1-cos2α=2sin²α 1+sinα=[sin(α/2)+cos(α/2)]²;
2013-12-15
展开全部
sin(3π/2+α)=sin3π/2 cosa+cos3π/2 sina=-cosacos(3π/2-α)=cos3π/2 cosa+sin3π/2 sina=-sina公式:cos(a-b)=cosa cosb+sina sinb sin(a+b)=sina cosb+cosa sinb cos(a+b)=cosa cosb-sina sinb sin(a-b)=sina cosb-cosa sinbcot是余切的意思,是正切tan的倒数,即cot a=1/tan a满意请采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-15
展开全部
sin(3π/2+a)=sin(π+π/2+a)= -sin(π/2+a)= -sin(π/2-(-a))= -cos(-a)= -cosacos(3π/2-a)=cos(π+π/2-a)= -cos(π/2-a)= -sinacot是余切,就是a的邻边与对边的比值。谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询