已知数列{an}的前n项和为Sn,且an=S(n-1)+2(n>=2),a1=2证明数列{an}是

已知数列{an}的前n项和为Sn,且an=S(n-1)+2(n>=2),a1=2证明数列{an}是等比数列,并求数列{an}的通项公式... 已知数列{an}的前n项和为Sn,且an=S(n-1)+2(n>=2),a1=2证明数列{an}是等比数列,并求数列{an}的通项公式 展开
 我来答
匿名用户
2014-07-07
展开全部
证明:
因为:an=S(n-1)+2……(1)
所以:a(n+1)=Sn+2……(2)且Sn-S(n-1)=an
所以(2)-(1),得:
a(n+1)-an=an,即:a(n+1)/an=2
故数列{an}是首项a1=2,公比q为2的等比数列得证。

所以:an=a1×q^(n-1)=2^n为所求
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式