多项式因式分解a^3x^4-2a^2x^2-x+a-1=(ax^2-x-1)(a^2x^2+ax-a+1),求过程 20

 我来答
数学爱好者645
2014-10-19 · TA获得超过1571个赞
知道大有可为答主
回答量:2083
采纳率:0%
帮助的人:654万
展开全部
原式=(a^3)x^4-(2a^2-a)x^2-(ax^2+x-a+1)
=(a^3)x^4-(2a^2-a)x^2-[a(x+1)(x-1)+(x+1)]
=(a^3)x^4-(2a^2-a)x^2-(x+1)(ax-a+1)①
=[ax^2-(x+1)][(a^2)x+(ax-a+1)]②
=(ax^2-x-1)[(a^2)x^2+ax-a+1]
①到②用十字相乘法
ax^2 -(x+1)
(a^2)x^2 ax-a+1
a(x^2)(ax-a+1)-(a^2)(x^2)(x+1)=-(2a^2-a)x^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式